Detection of influenza virus using peroxidase-mimic of gold nanoparticles.

Biotechnol Bioeng

Research Institute of Green Science and Technology, Shizuoka University, Ohya Suruga-ku, Shizuoka, Japan.

Published: October 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A modified enzyme-linked immunosorbent assay (ELISA) with nanomaterials is an effective and powerful method to amplify the signal and reduce the cost of detecting and measuring trace biomarkers or proteins. In this study, an ultra-sensitive colorimetric immunoassay was designed, and its ability to detect influenza viruses using positively charged gold nanoparticles ((+)Au NPs) was assessed as a possible role for peroxidase-mimic inorganic enzymes. This method detected influenza virus A (H1N1) with a linear range up to 10 pg mL(-1) and clinically isolated influenza virus A (H3N2) up to 10 plaque forming units (PFU) mL(-1) , where its sensitivity improved to 500-fold higher than that of commercial virus kits. The sensitivity of this proposed method was not declined even though in complex biological media in compared to conventional ELISA. These results revealed that the (+)AuNP-based colorimetric immunoassay could be suitable for lab-on-a-chip device and open new opportunities for clinical protein diagnostics. Biotechnol. Bioeng. 2016;113: 2298-2303. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.25982DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
gold nanoparticles
8
colorimetric immunoassay
8
detection influenza
4
virus
4
virus peroxidase-mimic
4
peroxidase-mimic gold
4
nanoparticles modified
4
modified enzyme-linked
4
enzyme-linked immunosorbent
4

Similar Publications

Influenza virus neuraminidase (NA) is a crucial target for protective antibodies, yet the development of recombinant NA protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of NA by grafting antigenic surface loops from low-expressing NA proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient.

View Article and Find Full Text PDF

Background: Patients with epilepsy often require long-term antiepileptic medications, which can affect hematological parameters. Influenza (H1N1) infection is known to potentially cause thrombocytopenia. This case examines the clinical implications of a 29-year-old female patient with epilepsy who developed influenza and significant platelet reduction.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory condition associated with increased morbidity and mortality, particularly during respiratory infections such as influenza. The interaction between COPD and influenza is multifaceted, involving compromised immune responses, chronic inflammation, and impaired lung function. Influenza infection can exacerbate COPD, leading to acute exacerbations, hospitalizations, and higher mortality.

View Article and Find Full Text PDF

CRISPR technology offers an entirely new approach to therapeutic development because it can target specific nucleotide sequences with high specificity, however, preclinical animal models are not useful for evaluation of their efficacy and potential off-target effects because of high gene sequence variations between animals and humans. Here, we explored the potential of using the CRISPR effector Cas13 to develop a new therapeutic approach for influenza A virus (IAV) infections based on its ability to specifically and robustly cleave single-strand viral RNA using a complementary CRISPR RNA (crRNA). We engineered crRNAs to target highly conserved regions in the IAV genome to create a potential pan-viral treatment strategy.

View Article and Find Full Text PDF

Objective: Multiple studies have confirmed that viral pneumonia is a high-risk factor for invasive pulmonary aspergillosis (IPA), this retrospective study aims to analyze the differences in clinical characteristics, prognosis, and high-risk factors for mortality between patients with influenza virus-associated pulmonary aspergillosis (IAPA) and those with COVID-19-associated pulmonary aspergillosis (CAPA).

Methods: Clinical data from IAPA and CAPA patients diagnosed at four hospitals were collected. The clinical characteristics and prognostic differences between the two groups were analyzed and compared, with Cox regression used to identify the risk factors for mortality.

View Article and Find Full Text PDF