ATR-101, a Selective and Potent Inhibitor of Acyl-CoA Acyltransferase 1, Induces Apoptosis in H295R Adrenocortical Cells and in the Adrenal Cortex of Dogs.

Endocrinology

Departments of Internal Medicine (C.R.L., G.D.H.), Pathology (J.E.M.), and Molecular and Integrative Physiology (W.E.R., V.C.), University of Michigan, Ann Arbor, Michigan 48109; and Atterocor, Inc (S.W.H.), Ann Arbor, Michigan 48104.

Published: May 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

ATR-101 is a novel, oral drug candidate currently in development for the treatment of adrenocortical cancer. ATR-101 is a selective and potent inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase 1 (ACAT1), an enzyme located in the endoplasmic reticulum (ER) membrane that catalyzes esterification of intracellular free cholesterol (FC). We aimed to identify mechanisms by which ATR-101 induces adrenocortical cell death. In H295R human adrenocortical carcinoma cells, ATR-101 decreases the formation of cholesteryl esters and increases FC levels, demonstrating potent inhibition of ACAT1 activity. Caspase-3/7 levels and terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeled-positive cells are increased by ATR-101 treatment, indicating activation of apoptosis. Exogenous cholesterol markedly potentiates the activity of ATR-101, suggesting that excess FC that cannot be adequately esterified increases caspase-3/7 activation and subsequent cell death. Inhibition of calcium release from the ER or the subsequent uptake of calcium by mitochondria reverses apoptosis induced by ATR-101. ATR-101 also activates multiple components of the unfolded protein response, an indicator of ER stress. Targeted knockdown of ACAT1 in an adrenocortical cell line mimicked the effects of ATR-101, suggesting that ACAT1 mediates the cytotoxic effects of ATR-101. Finally, in vivo treatment of dogs with ATR-101 decreased adrenocortical steroid production and induced cellular apoptosis that was restricted to the adrenal cortex. Together, these studies demonstrate that inhibition of ACAT1 by ATR-101 increases FC, resulting in dysregulation of ER calcium stores that result in ER stress, the unfolded protein response, and ultimately apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2015-2052DOI Listing

Publication Analysis

Top Keywords

atr-101
13
atr-101 selective
8
selective potent
8
potent inhibitor
8
adrenal cortex
8
dogs atr-101
8
adrenocortical cell
8
cell death
8
inhibition acat1
8
atr-101 suggesting
8

Similar Publications

Background: Based on reports on elevated cholesterol levels in cancer cells, strategies to lower cholesterol synthesis have been suggested as an antitumour strategy. However, cholesterol depletion has also been shown to induce tumour-promoting actions in tumour-associated macrophages (TAMs).

Methods: We performed lipidomic and transcriptomic analyses of human lung cancer material.

View Article and Find Full Text PDF

Cushing's disease (CD) is a serious endocrine disorder characterized by chronic hypercortisolism, or Cushing's syndrome (CS), caused by a corticotroph pituitary tumor, which induces an excessive adrenocorticotropic hormone (ACTH) and consequently cortisol secretion. CD presents a severe clinical burden, with impairment of the quality of life and increase in mortality. Pituitary surgery represents the first-line therapy, but it is non-curative in one third of patients, requiring additional treatments.

View Article and Find Full Text PDF

Context: Patients with classic congenital adrenal hyperplasia (CAH) often require supraphysiologic glucocorticoid doses to suppress adrenocorticotropic hormone (ACTH) and control androgen excess. Nevanimibe hydrochloride (ATR-101), which selectively inhibits adrenal cortex function, might reduce androgen excess independent of ACTH and thus allow for lower glucocorticoid dosing in CAH. 17-hydroxyprogesterone (17-OHP) and androstenedione are CAH biomarkers used to monitor androgen excess.

View Article and Find Full Text PDF

Background Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with very limited treatment options. Nevanimibe HCl (formerly ATR-101), a novel adrenal-specific sterol O-acyltransferase 1 (SOAT1) inhibitor, has been shown in nonclinical studies to decrease adrenal steroidogenesis at lower doses and to cause apoptosis of adrenocortical cells at higher doses. Methods This phase 1, multicenter, open-label study assessed the safety and pharmacokinetics (PK) of nevanimibe in adults with metastatic ACC (NCT01898715).

View Article and Find Full Text PDF

Background: Cushing's syndrome in humans shares many similarities with its counterpart in dogs in terms of etiology (pituitary versus adrenal causes), clinical signs, and pathophysiologic sequelae. In both species, treatment of pituitary- and adrenal-dependent disease is met with limitations. ATR-101, a selective inhibitor of ACAT1 (acyl coenzyme A:cholesterol acyltransferase 1), is a novel small molecule therapeutic currently in clinical development for the treatment of adrenocortical carcinoma, congenital adrenal hyperplasia, and Cushing's syndrome in humans.

View Article and Find Full Text PDF