Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The role of Homeobox transcription factors during fin and limb development have been the focus of recent work investigating the evolutionary origin of limb-specific morphologies. Here we characterize the expression of HoxD genes, as well as the cluster-associated genes Evx2 and LNP, in the paddlefish Polyodon spathula, a basal ray-finned fish. Our results demonstrate a collinear pattern of nesting in early fin buds that includes HoxD14, a gene previously thought to be isolated from global Hox regulation. We also show that in both Polyodon and the catshark Scyliorhinus canicula (a representative chondrichthyan) late phase HoxD transcripts are present in cells of the fin-fold and co-localize with And1, a component of the dermal skeleton. These new data support an ancestral role for HoxD genes in patterning the fin-folds of jawed vertebrates, and fuel new hypotheses about the evolution of cluster regulation and the potential downstream differentiation outcomes of distinct HoxD-regulated compartments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778128 | PMC |
http://dx.doi.org/10.1038/srep22720 | DOI Listing |