98%
921
2 minutes
20
Broad-scale animal diversity patterns have been traditionally explained by hypotheses focused on climate-energy and habitat heterogeneity, without considering the direct influence of vegetation structure and composition. However, integrating these factors when considering plant-animal correlates still poses a major challenge because plant communities are controlled by abiotic factors that may, at the same time, influence animal distributions. By testing whether the number and variation of plant community types in Europe explain country-level diversity in six animal groups, we propose a conceptual framework in which vegetation diversity represents a bridge between abiotic factors and animal diversity. We show that vegetation diversity explains variation in animal richness not accounted for by altitudinal range or potential evapotranspiration, being the best predictor for butterflies, beetles, and amphibians. Moreover, the dissimilarity of plant community types explains the highest proportion of variation in animal assemblages across the studied regions, an effect that outperforms the effect of climate and their shared contribution with pure spatial variation. Our results at the country level suggest that vegetation diversity, as estimated from broad-scale classifications of plant communities, may contribute to our understanding of animal richness and may be disentangled, at least to a degree, from climate-energy and abiotic habitat heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747316 | PMC |
http://dx.doi.org/10.1002/ece3.1972 | DOI Listing |
J Environ Manage
September 2025
A.P. Leventis Ornithological Research Institute (APLORI), Centre of Excellence, University of Jos Biological Conservatory, P.O.Box 13404, Laminga, Jos, 930001, Plateau State, Nigeria. Electronic address:
Urban green spaces serve as critical refugia for bird conservation in an increasingly urbanized world. To understand how these spaces support avian communities in Afrotropical cities, we investigated bird assemblages across 40 urban green spaces in Jos-Plateau and Abuja-FCT in central Nigeria, covering a total of 91 transects (45.5 km), to examine how green space typologies and attributes influence avian biodiversity.
View Article and Find Full Text PDFFront Plant Sci
August 2025
School of Life Science, Guizhou Normal University, Guiyang, China.
Tree species adopt diverse drought resistance strategies, which are crucial for the ability of karst vegetation to adapt to drought stress. However, our understanding of how to differentiate these strategies remains limited, particularly with respect to identifying indicator traits that can accurately distinguish the drought resistance strategies used by different species. In this study, we use principal component analysis based on functional traits to distinguish the drought resistance strategies of and ; we identify key indicator traits reflecting differences in drought resistance strategies by analyzing the correlations of the same traits across different plant species.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Qilian Alpine Ecology and Hydrology Research Station, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco- Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; University of Chinese Academy of Sciences, Beijing, China. Electron
High-altitude and high-latitude ecosystems are among the most vulnerable to climate change and human disturbance, with widespread degradation threatening their role in water regulation, biodiversity conservation, and carbon sequestration. Livestock-exclusion enclosure is widely applied for alpine restoration, yet its ecological outcomes remain poorly understood across elevation gradients and ecosystem types. To address this, a 15-year grazing-exclusion experiment was conducted in a vertical transect spanning 2980-4164 m a.
View Article and Find Full Text PDFBiology (Basel)
August 2025
College of Economics, Xinjiang University of Finance and Economics, Urumqi 830012, China.
Biodiversity in arid river basins is highly climate-sensitive, yet the multi-pathway relations among the environment, landscape structure, connectivity, and plant diversity remain unclear. Framed by a scale-place-space sustainability perspective, we evaluated, in the Hotan River Basin (NW China), how the environmental factors affect plant diversity directly and indirectly via the landscape configuration and functional connectivity. We integrated Landsat images (2000, 2012, and 2023), 57 vegetation plots, topographic and meteorological data; computed the landscape indices and Conefor connectivity metrics (PC, IIC); and fitted a partial least squares structural equation model (PLS-SEM).
View Article and Find Full Text PDFBiology (Basel)
August 2025
School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA.
Mediterranean ecosystems have been grazed by livestock for thousands of years. While considered both a major anthropogenic stressor and a potential habitat conservation tool, the effects of livestock grazing on vertebrate populations remain poorly understood. Our study focused on goat and sheep grazing on a large island off the coast of Greece in order to shed light on (1) the nature of the relationship between livestock grazing and vertebrate assemblages, and (2) the mediating mechanisms.
View Article and Find Full Text PDF