Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Soft modelling or multivariate curve resolution (MCR) are well-known methodologies for the analysis of multivariate data in many different application fields. Results obtained by soft modelling methods are very likely impaired by rotational and scaling ambiguities, i.e. a full range of feasible solutions can describe the data equally well while fulfilling the constraints of the system. These issues are severely limiting the applicability of these methods and therefore, they can be considered as the most challenging ones. The purpose of the current review is to describe and critically compare the available methods that attempt at determining the range of ambiguity for the case of 3-component systems. Theoretical and practical aspects are discussed, based on a collection of simulated examples containing noise-free and noisy data sets as well as an experimental example.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2016.01.011 | DOI Listing |