Electrophysiological characterization of voltage-dependent calcium currents and TRPV4 currents in human pulmonary fibroblasts.

Am J Physiol Lung Cell Mol Physiol

Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and

Published: April 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We have presented indirect evidence of a key role for voltage-dependent Ca(2+) currents in TGFβ-induced synthetic function in human pulmonary fibroblast (HPF), as well as in bleomycin-induced pulmonary fibrosis in mice. Others, however, have provided indirect evidence for transient receptor potential vanilloid 4 (TRPV4) channels in both of those effects. Unfortunately, definitive electrophysiological descriptions of both currents in HPFs have been entirely lacking. In this study, we provide the first direct electrophysiological and pharmacological evidence of the currents in HPFs at rest and during overnight stimulation with TGFβ. These currents include a Ca(2+)-dependent K(+) current, a TRPV4 current, a chloride current, and an L-type voltage-dependent Ca(2+) current. Evidence for the TRPV4 current include activation of a large-conductance change by two putatively TRPV4-selective agonists (4α-phorbol-12,13-didecanoate; GSK1016790A), with a reversal potential near 0 mV, partial sensitivity to two different TRPV4-selective blockers (RN1734; HC067047), and partial reduction following removal of external Na(+) Substantial reduction of the evoked current was seen following the coapplication of RN1734, DIDS, and niflumic acid, suggesting that a chloride current is also involved. The voltage-dependent Ca(2+) current is found to be "L-type" in nature, as indicated by the voltage and time dependence of its activation, deactivation, and inactivation properties, and by its pharmacology (sensitivity to replacement with barium and inhibition by nifedipine, verapamil, or mibefradil). We also found that overnight treatment with TGFβ evoked a periodic current (inward at negative holding potentials, with reversal potential near 0 mV), which is sufficient to trigger the voltage-dependent Ca(2+) currents and, thereby, account for the rhythmic Ca(2+) oscillations, which we have described previously in these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00426.2015DOI Listing

Publication Analysis

Top Keywords

voltage-dependent ca2+
16
current
9
human pulmonary
8
indirect evidence
8
ca2+ currents
8
currents hpfs
8
trpv4 current
8
chloride current
8
ca2+ current
8
reversal potential
8

Similar Publications

P/Q-type (Ca2.1) Ca channels regulate the release of neurotransmitter at central synapses. Missense and nonsense mutations in CACNA1A, the gene that encodes the principal α subunit of the Ca2.

View Article and Find Full Text PDF

Astaxanthin Attenuates Chlorpyrifos-Induced Pulmonary Cytotoxicity by Modulating Mitochondrial Redox and Inflammatory Pathways.

Curr Issues Mol Biol

August 2025

Faculty of Health Sciences, Department of Occupational Health and Safety, Sinop University, 57000 Sinop, Türkiye.

Chlorpyrifos (CPF), an organophosphate pesticide, is known to induce pulmonary toxicity through oxidative stress, mitochondrial dysfunction, and inflammation. Astaxanthin (ASX), a xanthophyll carotenoid derived primarily from marine microalgae (Haematococcus pluvialis), possesses strong antioxidant properties and has demonstrated cellular protective effects in numerous oxidative stress studies. However, its efficacy against CPF-induced lung cell damage remains uncharacterized.

View Article and Find Full Text PDF

Cerebrospinal Fluid-contacting neurons (CSF-cNs) are GABAergic bipolar neurons found, in contact with the cerebrospinal fluid, along the vertebrate medullo-spinal central canal. They express Polycystin Kidney Disease 2-Like 1 channels (PKD2L1), members of the Transient Receptor Potential superfamily, and were shown to modulate motor activity and therefore suggested to act as a novel sensory system. However, in mice, they remain largely uncharacterized and it is crucial to comprehensively characterize their morphological and electrophysiological properties to determine whether they form a homogenous neuronal population and understand their role in the CNS.

View Article and Find Full Text PDF

Because of their interest in medicine, most studies on anesthesia have historically focused on the nervous systems of animals. This has often led to the neglect of the fact that all life forms have the potential to be anesthetized. Anesthetics target proteins, such as four-domain voltage-dependent Na/Ca⁺ channels (4D-NaV/CaV) and glutamate receptor channels (iGluR/GLR), which have homologs in a wide variety of species.

View Article and Find Full Text PDF

Reassessment of mechanical restitution in guinea pig cardiomyocytes through refined computational modelling.

Sci Rep

August 2025

Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, Brno, 625 00, Czech Republic.

Mechanical restitution (MR) represents the time recovery of the heart muscle's ability to contract. Despite intensive research, some aspects of MR remain unclear. To describe MR in guinea pig cardiac muscle, we modified our published mathematical model of guinea pig ventricular cardiomyocyte and supplemented it with a description of cellular contraction.

View Article and Find Full Text PDF