Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pancreatic ductal adenocarcinoma (PDA) is among the most lethal malignancies and resistance to chemotherapy prevents the therapeutic outcome. MicroRNAs provide a novel therapeutic strategy. Here, the established and primary human PDA cell lines PANC-1, AsPC-1, MIA-PaCa2, AsanPaCa, BxPC-3 and three gemcitabine-resistant subclones were examined. A gene expression profiling revealed that the ribonucleotide reductase M1 (RRM1) was upregulated in gemcitabine-resistant cells, which was confirmed by qRT-PCR, Western blot analysis and immunostaining. Inhibition of RRM1 by lipotransfection of siRNA reduced its expression and reversed gemcitabine resistance. The expression of RRM1 correlated to gemcitabine resistance in vitro and was higher in malignant patient pancreas tissue compared to non-malignant pancreas tissue. By microRNA expression profiling, we identified microRNA-101-3p as top-downregulated candidate. Lipotransfection of microRNA-101-3p mimics inhibited the expression of RRM1, reduced the luciferase activity of its 3'UTR and sensitized for gemcitabine-induced cytotoxicity. These results underline the relevance of microRNA-101-3p-driven regulation of RRM1 in drug resistance and suggest the co-delivery of microRNA-101-3p and gemcitabine for more effective therapy outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2016.01.038DOI Listing

Publication Analysis

Top Keywords

gemcitabine resistance
12
ribonucleotide reductase
8
expression profiling
8
expression rrm1
8
pancreas tissue
8
resistance
5
expression
5
rrm1
5
microrna-101-3p
4
microrna-101-3p reverses
4

Similar Publications

FOLFIRINOX and gemcitabine plus nab-paclitaxel represent the most effective chemotherapy regimens for metastatic pancreatic cancer patients nowadays, but the median overall survival remains less than one year. Pharmacogenomics and the individualization of therapy represent a promising strategy, including identifying patients at increased risk of toxicity. This review summarizes contemporary knowledge about genetic variability and putative biomarkers with published associations to therapy responses of pancreatic cancer not only for gold standard treatment regimens (FOLFIRINOX, gemcitabine/nab-paclitaxel and nal-IRI/5-fluorouracil) but also for other therapeutic options regarding targeted therapy and immunotherapy.

View Article and Find Full Text PDF

The clinical use of gemcitabine (GEM), a frontline chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), is limited by its short half-life, rapid systemic clearance, associated dose-limiting toxicities and a faster development of resistance in pancreatic cancer. Aspirin (ASP), a repurposed NSAID, has been shown to sensitize PDAC cells to GEM through modulation of multiple oncogenic and inflammatory pathways. However, its clinical use is restricted by dose-dependent gastrointestinal toxicity.

View Article and Find Full Text PDF

Emerging evidence highlights the potential of bioactive compounds, particularly polyphenols, as adjunctive therapeutic agents in the treatment of pancreatic cancer (PC), one of the most aggressive malignancies. This review focuses on epigallocatechin gallate (EGCG) and resveratrol due to their extensively documented anticancer activity, favorable safety profiles, and their unique ability to modulate multiple signaling pathways relevant to pancreatic tumorigenesis. Among polyphenols, these two have shown superior anti-cancer activity, epigenetic regulatory effects, and synergy with standard chemotherapies in preclinical pancreatic cancer models.

View Article and Find Full Text PDF

Nuclear cGAS mediated Replication Stress and Mitotic Catastrophe can Overcome Gemcitabine Resistance.

Cancer Lett

September 2025

Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA.

Gemcitabine, a ribonucleotide reductase (RNR) inhibitor, is active in pancreatic ductal carcinoma (PDAC) patients, but unfortunately has a limited impact on long term outcomes. Gemcitabine induces nucleotide deficiency, DNA damage including single stranded DNA (ssDNA) and replication stress (RS). DNA damage can activate cyclic GMP-AMP synthase (cGAS), leading to genome instability, micronucleus generation, and immune activation.

View Article and Find Full Text PDF

Natural lignan justicidin A-induced mitophagy as a targetable niche in bladder cancer.

Chem Biol Interact

September 2025

Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 10610, Taiwan; Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan. Electronic address:

Accumulated dysfunctional mitochondria are involved in tumorigenesis, and it is conceivable that mitophagy, a selective form of autophagic degradation of mitochondria, plays a tumor-suppressive role. Our bioinformatics analysis identified lignan justicidin A (JA) as a potential mitophagy inducer. In HRAS-mutant human bladder cancer T24 cells, JA reduced population cell growth, changed mitochondrial membrane potential, and induced autophagy.

View Article and Find Full Text PDF