98%
921
2 minutes
20
In first part of this experiment, biocompatibility of the newly developed electroactive polyurethane/siloxane films containing aniline tetramer moieties was demonstrated with proliferation and differentiation of C2C12 myoblasts. Here we further assessed the cytocompatibility of the prepared samples with HL1-cell line, the electrophysiological properties and the patch clamp recording of the seeded cells over the selected electroactive sample. Presence of electroactive aniline tetramer in the structure of polyurethane/siloxane led to the increased expression of cardiac-specific genes of HL-1 cells involved in muscle contraction and electrical coupling. Our results showed that expression of Cx43, TrpT-2, and SERCA genes was significantly increased in conductive sample compared to tissue culture plate and the corresponding non-conductive analogous. The prepared materials were not only biocompatible in terms of cellular toxicity, but did not alter the intrinsic electrical characteristics of HL-1 cells. Embedding the electroactive moiety into the prepared films improved the properties of these polymeric cardiac construct through the enhanced transmission of electrical signals between the cells. Based on morphological observation, calcium imaging and electrophysiological recordings, we demonstrated the potential applicability of these materials for cardiac tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1398-1407, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.35669 | DOI Listing |
J Biomed Mater Res A
June 2016
Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
In first part of this experiment, biocompatibility of the newly developed electroactive polyurethane/siloxane films containing aniline tetramer moieties was demonstrated with proliferation and differentiation of C2C12 myoblasts. Here we further assessed the cytocompatibility of the prepared samples with HL1-cell line, the electrophysiological properties and the patch clamp recording of the seeded cells over the selected electroactive sample. Presence of electroactive aniline tetramer in the structure of polyurethane/siloxane led to the increased expression of cardiac-specific genes of HL-1 cells involved in muscle contraction and electrical coupling.
View Article and Find Full Text PDFJ Biomed Mater Res A
March 2016
Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
Tissue-engineered cardiac patch aims at regenerating an infarcted heart by improving cardiac function and providing mechanical support to the diseased myocardium. In order to take advantages of electroactivity, a new synthetic method was developed for the introduction of an electroactive oligoaniline into the backbone of prepared patches. For this purpose, a series of electroactive polyurethane/siloxane films containing aniline tetramer (AT) was prepared through sol-gel reaction of trimethoxysilane functional intermediate polyurethane prepolymers made from castor oil and poly(ethylene glycol).
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2015
Department of Immunology, School of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran.
A series of novel polyurethane/siloxane-based wound dressing membranes was prepared through sol-gel reaction of methoxysilane end-functionalized urethane prepolymers composed of castor oil and ricinoleic methyl ester as well as methoxysilane functional aniline tetramer (AT) moieties. The samples were fully characterized and their physicochemical, mechanical, electrical, and biological properties were assayed. The biological activity of these dressings against fibroblast cells and couple of microbes was also studied.
View Article and Find Full Text PDF