A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Splitting of Interlayer Shear Modes and Photon Energy Dependent Anisotropic Raman Response in N-Layer ReSe₂ and ReS₂. | LitMetric

Splitting of Interlayer Shear Modes and Photon Energy Dependent Anisotropic Raman Response in N-Layer ReSe₂ and ReS₂.

ACS Nano

Institut de Physique et Chimie des Matériaux de Strasbourg and NIE, UMR 7504, Université de Strasbourg and CNRS, 23 rue du Lœss, BP43, Strasbourg 67034 Cedex 2, France.

Published: February 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigate the interlayer phonon modes in N-layer rhenium diselenide (ReSe2) and rhenium disulfide (ReS2) by means of ultralow-frequency micro-Raman spectroscopy. These transition metal dichalcogenides exhibit a stable distorted octahedral (1T') phase with significant in-plane anisotropy, leading to sizable splitting of the (in-plane) layer shear modes. The fan-diagrams associated with the measured frequencies of the interlayer shear modes and the (out-of-plane) interlayer breathing modes are perfectly described by a finite linear chain model and allow the determination of the interlayer force constants. Nearly identical values are found for ReSe2 and ReS2. The latter are appreciably smaller than but on the same order of magnitude as the interlayer force constants reported in graphite and in trigonal prismatic (2Hc) transition metal dichalcogenides (such as MoS2, MoSe2, MoTe2, WS2, WSe2), demonstrating the importance of van der Waals interactions in N-layer ReSe2 and ReS2. In-plane anisotropy results in a complex angular dependence of the intensity of all Raman modes, which can be empirically utilized to determine the crystal orientation. However, we also demonstrate that the angular dependence of the Raman response drastically depends on the incoming photon energy, shedding light on the importance of resonant exciton-phonon coupling in ReSe2 and ReS2.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b07844DOI Listing

Publication Analysis

Top Keywords

shear modes
12
rese2 res2
12
interlayer shear
8
photon energy
8
raman response
8
transition metal
8
metal dichalcogenides
8
in-plane anisotropy
8
interlayer force
8
force constants
8

Similar Publications