Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Given the ecological importance of biological motion and its relevance to social cognition, considerable effort has been devoted over the past decade to studying biological motion perception in autism. However, previous studies have asked observers to detect or recognize briefly presented human actions placed in isolation, without spatial or temporal context. Research on typical populations has shown the influence of temporal context in biological motion perception: prolonged exposure to one action gives rise to an aftereffect that biases perception of a subsequently displayed action. Whether people with autism spectrum disorders (ASD) show such adaptation effects for biological motion stimuli remains unknown. To address this question, this study examined how well youth with ASD recognize ambiguous actions and adapt to recently-observed actions. Compared to typically-developing (TD) controls, youth with ASD showed no differences in perceptual boundaries between actions categories, indicating intact ability in recognizing actions. However, children with ASD showed weakened adaptation to biological motion. It is unlikely that the reduced action adaptability in autism was due to delayed developmental trajectory, as older children with ASD showed weaker adaptation to actions than younger children with ASD. Our results further suggest that high-level (i.e., action) processing weakens with age for children with ASD, but this change may be accompanied by a potentially compensatory mechanism based on more involvement of low-level (i.e., motion) processing. Autism Res 2016, 9: 1103-1113. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/aur.1595DOI Listing

Publication Analysis

Top Keywords

biological motion
24
children asd
16
adaptation biological
8
autism spectrum
8
motion perception
8
temporal context
8
youth asd
8
motion
7
asd
7
biological
6

Similar Publications

Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.

View Article and Find Full Text PDF

In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).

View Article and Find Full Text PDF

Coarse-grained (CG) molecular dynamics simulations extend the length and time scales of atomistic simulations by replacing groups of correlated atoms with CG beads. Machine-learned coarse-graining (MLCG) has recently emerged as a promising approach to construct highly accurate force fields for CG molecular dynamics. However, the calibration of MLCG force fields typically hinges on force matching, which demands extensive reference atomistic trajectories with corresponding force labels.

View Article and Find Full Text PDF

Shear-stress-induced swirling flow in biological systems.

Biosystems

September 2025

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:

Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.

View Article and Find Full Text PDF

The Skp2-Cks1 protein-protein interaction (PPI) within the SCF ubiquitin ligase acts as a co-receptor for phosphorylated CDK inhibitors-most prominently p27-relieving CDK inhibition and advancing the cell cycle, a dependency accentuated in RB-pathway-defective cancers. Crystallographic and cryo-EM analyses delineate a composite pocket formed by the Skp2 leucine-rich-repeat groove and the phosphate-recognition site of Cks1; Cks1-centered open-closed motions further influence druggability. Using HTRF/TR-FRET and AlphaScreen biochemistry, alongside cell-based target-engagement readouts in some studies, three small-molecule classes have emerged that disrupt this PPI: 1,3-diphenyl-pyrazines and triazolo[1,5-a]pyrimidines (lead E35) with low-micromolar potency, and "Skp2E3LI" compounds with micromolar cellular activity.

View Article and Find Full Text PDF