98%
921
2 minutes
20
Objective: Hippocampal sclerosis is the most common neuropathologic finding in cases of medically intractable mesial temporal lobe epilepsy. In this study, we analyzed the gene expression profiles of dentate granule cells of patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations, and to shed light on the transcriptional changes associated with hippocampal sclerosis.
Methods: RNA was extracted, and complementary DNA (cDNA) was prepared and amplified from dentate granule cells that had been harvested by laser capture microdissection from surgically resected hippocampi from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis. Sequencing libraries were sequenced, and the resulting sequencing reads were aligned to the reference genome. Differential expression analysis was used to ascertain expression differences between patients with and without hippocampal sclerosis.
Results: Greater than 90% of the RNA-Seq reads aligned to the reference. There was high concordance between transcriptional profiles obtained for duplicate samples. Principal component analysis revealed that the presence or absence of hippocampal sclerosis was the main determinant of the variance within the data. Among the genes up-regulated in the hippocampal sclerosis samples, there was significant enrichment for genes involved in oxidative phosphorylation.
Significance: By analyzing the gene expression profiles of dentate granule cells from surgically resected hippocampal specimens from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis, we have demonstrated the utility of next-generation sequencing methods for producing biologically relevant results from small populations of homogeneous cells, and have provided insight on the transcriptional changes associated with this pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783229 | PMC |
http://dx.doi.org/10.1111/epi.13305 | DOI Listing |
Neurol Neuroimmunol Neuroinflamm
November 2025
Departments of Neurology and Ophthalmology, NYU Grossman School of Medicine, NY; and.
Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.
Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.
Brain Commun
August 2025
Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK.
Understanding the cognitive trajectory of a neurological disease can provide important insight on underlying mechanisms and disease progression. Cognitive impairment is now well established as beginning many years before the diagnosis of Alzheimer's disease, but pre-diagnostic profiles are unclear for other neurological conditions that may be associated with cognitive impairment. We analysed data from the prospective UK Biobank cohort with study baseline assessment performed between 2006 and 2010 and participants followed until 2021.
View Article and Find Full Text PDFEpilepsy Behav
September 2025
Department of Clinical and Experimental Epilepsy, University College London, London the United Kingdom of Great Britain and Northern Ireland; MRI Unit, Chalfont Centre for Epilepsy, Bucks, the United Kingdom of Great Britain and Northern Ireland. Electronic address:
Memory functional MRI (fMRI) has been used to explore cognitive processing in people with refractory temporal lobe epilepsy (TLE) to predict memory decline after anterior temporal lobe resection (ATLR). Traditional studies employed univariate analysis (UVA), focusing on isolated voxel activity in mesial temporal regions. By contrast, multivariate pattern analysis (MVPA), examines distributed activity patterns , offering deeper insight into neural networks supporting cognitive functions.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Neuroscience and Physiology.
Cannabidiol (CBD) decreases seizures in patients with severe pediatric-onset epilepsies including Dravet, Lennox-Gastaut, and Tuberous Sclerosis syndromes. However, the effects of CBD on neuronal activity and circuits remain obscure. In the mouse hippocampus, we found that CBD causes a GPR55-independent decrease in CA1 pyramidal neuron firing frequency and a GPR55-dependent reduction in CA3 to CA1 hippocampal activity propagation.
View Article and Find Full Text PDFJ Neurosci
September 2025
Center for Neurodegenerative Disease Research, Dept. Pathology, Perelman School of Medicine at the University of Pennsylvania, 3 Maloney Bldg, 3600 Spruce St, Philadelphia, PA 19140, USA.
Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence indicates that TDP-43 pathology induces neuronal hyperexcitability, which may contribute to excitotoxic neuronal death. To characterize TDP-43 mediated network excitability changes in a disease-relevant model, we performed in vivo continuous electroencephalography monitoring and ex vivo acute hippocampal slice electrophysiology in rNLS8 mice (males and females), which express human TDP-43 with a defective nuclear localization signal (hTDP-43ΔNLS).
View Article and Find Full Text PDF