98%
921
2 minutes
20
Williams syndrome (WS) is a neurodevelopmental disorder caused by a genomic deletion of ∼28 genes that results in a cognitive and behavioral profile marked by overall intellectual impairment with relative strength in expressive language and hypersocial behavior. Advancements in protocols for neuron differentiation from induced pluripotent stem cells allowed us to elucidate the molecular circuitry underpinning the ontogeny of WS. In patient-derived stem cells and neurons, we determined the expression profile of the Williams-Beuren syndrome critical region-deleted genes and the genome-wide transcriptional consequences of the hemizygous genomic microdeletion at chromosome 7q11.23. Derived neurons displayed disease-relevant hallmarks and indicated novel aberrant pathways in WS neurons including over-activated Wnt signaling accompanying an incomplete neurogenic commitment. We show that haploinsufficiency of the ATP-dependent chromatin remodeler, BAZ1B, which is deleted in WS, significantly contributes to this differentiation defect. Chromatin-immunoprecipitation (ChIP-seq) revealed BAZ1B target gene functions are enriched for neurogenesis, neuron differentiation and disease-relevant phenotypes. BAZ1B haploinsufficiency caused widespread gene expression changes in neural progenitor cells, and together with BAZ1B ChIP-seq target genes, explained 42% of the transcriptional dysregulation in WS neurons. BAZ1B contributes to regulating the balance between neural precursor self-renewal and differentiation and the differentiation defect caused by BAZ1B haploinsufficiency can be rescued by mitigating over-active Wnt signaling in neural stem cells. Altogether, these results reveal a pivotal role for BAZ1B in neurodevelopment and implicate its haploinsufficiency as a likely contributor to the neurological phenotypes in WS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddw010 | DOI Listing |
Adv Exp Med Biol
September 2025
Department of Stem Cells & Regenerative Medicine, Center for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
Wound healing is a dynamic and complex process that consists of four interconnected phases: hemostasis, inflammation, proliferation, and remodeling. This complex process is based on the coordinated actions of growth factors, cytokines, and other cellular interactions. However, conditions such as diabetes and chronic illnesses can disrupt this process and lead to nonhealing wounds or chronic ulcers.
View Article and Find Full Text PDFTissue Eng Regen Med
September 2025
Department of Biomedical Science, Catholic Kwandong University, 24 Beomil-ro 579beon-gil, Gangneung-si, Gangwon-do, South Korea.
Background: Neurotraumatic conditions, such as spinal cord injury, brain injury, and neurodegenerative conditions, such as amyotrophic lateral sclerosis, pose a challenge to the field of rehabilitation for its complexity and nuances in management. For decades, the use of cell therapy in treatment of neurorehabilitation conditions have been explored to complement the current, mainstay treatment options; however, a consensus for standardization of the cell therapy and its efficacy has not been reached in the medical community. This study aims to provide a comparative review on the very topic of cell therapy use in neurorehabilitation conditions in an attempt to bridge the gap in knowledge.
View Article and Find Full Text PDFThis review analyzes Russian and international literature on the treatment of bilateral limbal stem cell deficiency (LSCD), focusing on the use of Simple Oral Mucosal Epithelial Transplantation (SOMET) as a surgical method for restoring the ocular surface. Contemporary sources report 64 cases of SOMET used in the treatment of bilateral LSCD: 35 cases of chemical burns, 16 of thermal burns, 7 cases of Stevens-Johnson syndrome, 1 keratitis, 1 cicatricial pemphigoid, 1 dermoid, 1 case of drug-induced LSCD (mitomycin C), etc. Notably, all transplantations resulted in complete epithelialization, and in 3 cases, penetrating keratoplasty was subsequently performed with favorable functional and anatomical outcomes.
View Article and Find Full Text PDFCancer Discov
September 2025
Evolutionary Dynamics Group, Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
Unlabelled: Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA.
View Article and Find Full Text PDFElife
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
Innate immune cells can acquire a memory phenotype, termed trained immunity, but the mechanism underlying the regulation of trained immunity remains largely elusive. Here, we demonstrate that inhibition of Aurora kinase A (AurA) dampens trained immunity induced by β-glucan. ATAC-seq and RNA-seq analysis reveal that AurA inhibition restricts chromatin accessibility of genes associated with inflammatory pathways such as JAK-STAT, TNF, and NF-κB pathways.
View Article and Find Full Text PDF