A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Target-specific identification and characterization of the putative gene cluster for brasilinolide biosynthesis revealing the mechanistic insights and combinatorial synthetic utility of 2-deoxy-l-fucose biosynthetic enzymes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Brasilinolides exhibiting potent immunosuppressive and antifungal activities with remarkably low toxicity are structurally characterized by an unusual modified 2-deoxy-l-fucose (2dF) attached to a type I polyketide (PK-I) macrolactone. From the pathogenic producer Nocardia terpenica (Nocardia brasiliensis IFM-0406), a 210 kb genomic fragment was identified by target-specific degenerate primers and subsequently sequenced, revealing a giant nbr gene cluster harboring genes (nbrCDEF) required for TDP-2dF biosynthesis and those for PK-I biosynthesis, modification and regulation. The results showed that the genetic and domain arrangements of nbr PK-I synthases agreed colinearly with the PK-I structures of brasilinolides. Subsequent heterologous expression of nbrCDEF in Escherichia coli accomplished in vitro reconstitution of TDP-2dF biosynthesis. The catalytic functions and mechanisms of NbrCDEF enzymes were further characterized by systematic mix-and-match experiments. The enzymes were revealed to display remarkable substrate and partner promiscuity, leading to the establishment of in vitro hybrid deoxysugar biosynthetic pathways throughout an in situ one-pot (iSOP) method. This study represents the first demonstration of TDP-2dF biosynthesis at the enzyme and molecular levels, and provides new hope for expanding the structural diversity of brasilinolides by combinatorial biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5ob02292dDOI Listing

Publication Analysis

Top Keywords

tdp-2df biosynthesis
12
gene cluster
8
biosynthesis
6
target-specific identification
4
identification characterization
4
characterization putative
4
putative gene
4
cluster brasilinolide
4
brasilinolide biosynthesis
4
biosynthesis revealing
4

Similar Publications