Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.2A0815-344RRDOI Listing

Publication Analysis

Top Keywords

colony-stimulating factor-1
32
src family
28
factor-1 receptor
20
family kinases
16
colony-stimulating factor-1-induced
16
colony-stimulating
13
family kinase
12
subcellular localization
12
kinase expression
8
factor-1
8

Similar Publications

Increasing evidence indicates a potential link between macrophage colony-stimulating factor 1 (CSF1) and macrophage migration inhibitory factor (MIF) with nonalcoholic fatty liver disease (NAFLD). However, the causal relationships remain unclear. This study aims to clarify the causal associations between CSF1, MIF, and NAFLD using Mendelian randomization (MR) analysis.

View Article and Find Full Text PDF

Melanoma is a malignant neoplasm with a high propensity to metastasize, arising from melanocytes and contributing significantly to global morbidity and mortality. Despite the demonstrated efficacy of many immunotherapy approaches, these methods rely on direct destruction of tumor cells with minimal impact on the aggregate of nearby non-tumor cells, the extracellular matrix, and blood vessels that form the tumor microenvironment (TME). The TME is known to be heterogeneous and dynamic, exerting both antitumor and pro-tumor effects depending on the specific features and stage of carcinogenesis.

View Article and Find Full Text PDF

COVID-19 persists globally with profound social and economic consequences, and its complex interplay with other diseases makes it a syndemic. Rheumatoid arthritis (RA), a chronic autoimmune disorder, has shown increased incidence during the pandemic, with patients displaying higher susceptibility to COVID-19. This overlap prompted the hypothesis of ''.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is a leading risk factor for cardiovascular diseases globally, characterised by the accumulation of lipids and cholesterol in arterial walls, causing vascular narrowing and sclerosis along with chronic inflammation; this leads to increased risk of heart disease and stroke, significantly impacting patients' health. Danxia Tiaoban Decoction (DXTB), a traditional Chinese medicine (TCM) formula, has demonstrated positive clinical effects in treating AS; however, its mechanisms of action remain unclear.

Objective: To explore the potential mechanisms of action of DXTB in treating AS through multi-omics integration and experimental validation.

View Article and Find Full Text PDF

Background: We sought to investigate the association between circulating inflammatory and cardiovascular proteomics biomarkers and cardiac autonomic nervous dysfunction-sensitive heart rate variability indices.

Methods: Using the population-based KORA (Cooperative Health Research in the Region of Augsburg) cohort, 233 proteomics biomarkers were quantified in baseline plasma samples of 1389 individuals using proximity extension assay technology. Five heart rate variability indices (Rényi entropy of the histogram with order [α] 4, total power of the density spectra, SD of word sequence, SD of the short-term normal-to-normal interval variability, compression entropy) were assessed at baseline in 982 individuals and in 407 individuals at baseline and at 14-year follow-up.

View Article and Find Full Text PDF