98%
921
2 minutes
20
Multiferroic materials have simultaneous magnetic and ferroelectric long-range orders and can be potentially useful for a wide range of applications. Conventional ferroelectricity in oxide perovskites favors nonmagnetic electronic configurations of transition metal ions, thus limiting the number of intrinsic multiferroic materials. On the other hand, this is not necessarily true for multiferroic fluorides. Using molecular beam epitaxy, we demonstrate for the first time that the multiferroic orthorhombic fluoride BaCoF4 can be synthesized in thin film form. Ferroelectric hysteresis measurements and piezoresponse force microscopy show that the films are indeed ferroelectric. From structural information, magnetic measurements, and first-principles calculations, a modified magnetic ground state is identified which can be represented as a combination of bulk collinear antiferromagnetism with two additional canted spin orders oriented along orthogonal axes of the BaCoF4 unit cell. The calculations indicate that an anisotropic epitaxial strain is responsible for this unusual magnetic ground state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b10814 | DOI Listing |
Small
September 2025
Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physic
Antimony selenide (SbSe), a narrow-bandgap semiconductor with strong light absorption, exhibits photoresponse up to ≈1050 nm due to its intrinsic 1.15 eV bandgap. To extend detection into the near-infrared (NIR, 700-1350 nm), Bi-alloyed (BiSb)Se is developed via vacuum sputtering and postselenization.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Engineering, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
A new family of nanostructured ternary intermetallic compounds - named the ZIP phases - is introduced in this work. The ZIP phases exhibit dualistic atomic ordering, i.e.
View Article and Find Full Text PDFNanoscale
September 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia.
Background: Candidiasis, predominantly caused by , poses a significant global health challenge, especially in tropical regions. Nystatin is a potent antifungal agent that is hindered by its low solubility and permeability, limiting its clinical efficacy.
Methods: This study aimed to investigate the potential of a layer-by-layer (LBL) coating system, employing chitosan and alginate, to improve the stability, entrapment efficiency (%EE), and antifungal efficacy of nystatin-loaded liposomes against Candida albicans.
J Phys Chem C Nanomater Interfaces
September 2025
Leiden Insitute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands.
In this study, we report the synthesis of single-crystalline h-BN on Ni(111) under ultrahigh vacuum (UHV) conditions using hexamethylborazine (HMB) as a nonclassical precursor. The novel use of HMB facilitates the diffusion of methyl groups into the bulk of Ni(111), playing a critical role in the achievement of high-quality crystalline h-BN layers. The synthesis is performed on a 2 mm-thick Ni(111) single crystal and on a 2-μm-thick Ni(111) thin film on sapphire to evaluate the feasibility of synthesizing h-BN on industrially relevant substrates.
View Article and Find Full Text PDF