Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm(2).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4728442PMC
http://dx.doi.org/10.1038/ncomms10279DOI Listing

Publication Analysis

Top Keywords

series connection
12
module efficiency
12
organic photovoltaic
8
photovoltaic modules
8
printing techniques
8
patterning processes
8
aperture loss
8
module
6
connection architecture
4
architecture large-area
4

Similar Publications

BackgroundCoronavirus Disease 2019 (COVID-19) has led to dramatic changes including social distancing, closure of schools, travel bans, and issues of stay-at-home orders. The health-care field has been transformed with elective procedures and on-site visits being deferred. Telemedicine has emerged as a novel mechanism to continue to provide care.

View Article and Find Full Text PDF

Atypical proximal tibial fractures in adolescents are rare, particularly when linked to hormonal therapy for short stature. This case series reports the clinical and imaging features of atypical proximal tibial and distal femoral physeal fractures in male adolescents undergoing combined growth hormone (GH) and aromatase inhibitor (AI) therapy for idiopathic short stature. We report three cases of skeletally immature male adolescents (ages 12-16) treated with GH and anastrozole who presented with acute leg pain following low-energy trauma during soccer.

View Article and Find Full Text PDF

Predicting complex time series with deep echo state networks.

Chaos

September 2025

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.

View Article and Find Full Text PDF

We report the observation of negative differential resistance (NDR) in single-atom single-electron devices based on arsenic, phosphorus and potassium dopants implanted in a silicon host matrix. All devices exhibit NDR, with the potassium-based one exhibiting NDR at room temperature because of the larger charging and confinement energies. Our experimental results are reproduced with a simple model that assumes sequential electron tunnelling through two series-connected charge centres, each having two discrete energy levels.

View Article and Find Full Text PDF

Hypoxia has been extensively studied as a stressor which pushes human bodily systems to responses and adaptations. Nevertheless, a few evidence exist onto constituent trains of motor unit action potential, despite recent advancements which allow to decompose surface electromyographic signals. This study aimed to investigate motor unit properties from noninvasive approaches during maximal isometric exercise in normobaric hypoxia.

View Article and Find Full Text PDF