98%
921
2 minutes
20
Our team in Europe has developed the routine clinical laboratory identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). To evaluate the utility of MALDI-TOF MS in tropical Africa in collaboration with local teams, we installed an apparatus in the Hôpital Principal de Dakar (Senegal), performed routine identification of isolates, and confirmed or completed their identification in France. In the case of discordance or a lack of identification, molecular biology was performed. Overall, 153/191 (80.1%) and 174/191 (91.1%) isolates yielded an accurate and concordant identification for the species and genus, respectively, with the 2 different MALDI-TOF MSs in Dakar and Marseille. The 10 most common bacteria, representing 94.2% of all bacteria routinely identified in the laboratory in Dakar (Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus haemolyticus, Enterobacter cloacae, Enterococcus faecalis, and Staphylococcus epidermidis) were accurately identified with the MALDI-TOF MS in Dakar. The most frequent misidentification in Dakar was at the species level for Achromobacter xylosoxidans, which was inaccurately identified as Achromobacter denitrificans, and the bacteria absent from the database, such as Exiguobacterium aurientacum or Kytococcus schroeteri, could not be identified. A few difficulties were observed with MALDI-TOF MS for Bacillus sp. or oral streptococci. 16S rRNA sequencing identified a novel bacterium, "Necropsobacter massiliensis." The robust identification of microorganisms by MALDI-TOF MS in Dakar and Marseille demonstrates that MALDI-TOF MS can be used as a first-line tool in clinical microbiology laboratories in tropical countries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4696746 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145889 | PLOS |
Life Sci Alliance
November 2025
Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
Mass-based fingerprinting can characterize microorganisms; however, expansion of these methods to predict specific gene functions is lacking. Therefore, mass fingerprinting was developed to functionally profile a yeast knockout library. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) fingerprints of 3,238 knockouts were digitized for correlation with gene ontology (GO).
View Article and Find Full Text PDFArch Toxicol
September 2025
Laboratorio de Proteómica, Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.
The scorpion Hottentotta judaicus inhabits the Levant region of the Middle East, including Lebanon, Jordan, Palestine, and Israel. While previous research focused on its insecticidal properties and sodium-channel-targeting toxins, its venom remains largely unexplored using modern proteomic approaches. We analyzed the venom composition of H.
View Article and Find Full Text PDFFront Nutr
August 2025
Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai, China.
Background: Emerging evidence suggests vitamin D plays a dual role in immune regulation, yet its interplay with genetic susceptibility in early-life allergy development remains poorly understood. This prospective cohort study investigated whether cord blood 25-hydroxyvitamin D [25(OH)D] levels interact with immunoregulatory gene variants to influence childhood food allergy risk.
Methods: A total of 1,049 mother-infant pairs from the Shanghai Allergy Cohort were stratified by cord blood 25(OH)D concentrations (<15, 15-25, >25 ng/mL).
Can J Microbiol
September 2025
Universidad de Costa Rica, School of Microbiology & Center for Research in Tropical Diseases (CIET), San José, Costa Rica;
Coffee plants and beans are prone to fungal contamination that pose health risks to consumers by producing mycotoxins like ochratoxin A (OTA). Thus, the present study aimed to analyze the mycobiota of Costa Rican coffee beans, focusing on potentially ochratoxigenic species and their in vitro susceptibility patterns to antifungal agents. Fungal isolates were obtained from cherry, green, and roasted coffee beans from Costa Rica; they were identified by morphology, MALDI-TOF technology, and sequencing.
View Article and Find Full Text PDFBackground: Actinomyces graevenitzii is a relatively uncommon Actinomyces species, which is an oral species and predominantly recovered from respiratory locations [1,2]. It is a gram-positive anaerobic bacteria or microaerobic filamentation bacteria, which can induce pyogenic and granulomatous inflammation characterized by swelling and concomitant pus, sinus formation, and the formation of yellow sulfur granules. All tissues and organs can be infected; the most common type involves the neck and face (55%), followed by the abdominal and pelvic cavities (20%).
View Article and Find Full Text PDF