Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This study aimed to test the hypothesis that lung cancer patient-derived circulating microparticles (LCC-MPs) enhance metastatic lung tumors in a rat model.

Procedures: The controls (n = 6) and LCC-MP-treated rats (n = 6) with N1S1-induced pulmonary metastatic hepatocellular carcinoma (HCC) underwent dual-source CT (DSCT) on days 10, 15, and 20. Cellular and molecular studies were performed subsequently.

Results: DSCT revealed slow progression of metastatic lung tumors in the controls. Compared with the controls, the LCC-MP-treated rats exhibited significantly more and larger metastatic tumors on days 15 and 20 on DSCT, enhanced angiogenesis with higher microvessel count (CD34+), more CXCR4+ and VEGF+ cells in immunohistofluorescence studies, and higher protein expression levels of eNOS, angiopoietin, vascular endothelial growth factor, and CD31 on western blotting (Mann-Whitney test, all P < 0.05).

Conclusions: LCC-MPs can elicit oncogenic stimulation and accelerate metastatic HCC growth in rat lung as demonstrated on DSCT and enhanced tumoral angiogenesis as confirmed in cellular and molecular studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11307-015-0923-8DOI Listing

Publication Analysis

Top Keywords

cancer patient-derived
8
patient-derived circulating
8
circulating microparticles
8
cellular molecular
8
molecular studies
8
metastatic lung
8
lung tumors
8
lcc-mp-treated rats
8
microparticles enhance
4
lung
4

Similar Publications

Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC.

View Article and Find Full Text PDF

Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.

Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.

View Article and Find Full Text PDF

Exosomal Proteome from Hepatocellular Carcinoma Patient-Derived Xenograft Mice Serves as Identity of Liver Cancer.

J Proteome Res

September 2025

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.

Hepatocellular carcinoma (HCC) constitutes approximately 90% of liver cancers, yet its early detection remains challenging due to the low sensitivity of current diagnostic methods and the difficulty in identifying minimal cancer cells within the body. This study employed a patient-derived xenograft (PDX) mouse model to screen for biomarkers, leveraging its advantage of low background interference compared to human serum exosome studies. Using a novel microextraction technique, exosomes were isolated from just one microliter of serum from HCC PDX mice, followed by proteomic profiling.

View Article and Find Full Text PDF

Sparing effects of FLASH irradiation in patient-derived lung tissue.

Radiother Oncol

September 2025

Institut Curie, Inserm U1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, 91405 Orsay Cedex, France. Electronic address:

Background And Purpose: Radiation toxicities, such as pneumonitis and fibrosis, are major limitations affecting patients' quality of life. Developed a decade ago, FLASH radiotherapy is an innovative method that, by delivering radiation at ultrafast dose rate, reduces radiation toxicities on healthy tissue while preserving the anti-tumoral effect of radiotherapy. This so-called FLASH effect has been described in different preclinical models but has not been observed in human tissue.

View Article and Find Full Text PDF

Patient-derived cancer organoids (PDCOs) are a valuable model to recapitulate human disease in culture with important implications for drug development. However, current methods for rapidly and reproducibly assessing PDCOs are limited. Label-free imaging methods are a promising tool to measure organoid level heterogeneity and rapidly screen drug response in PDCOs.

View Article and Find Full Text PDF