Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We report the magnetic and visible light driven photocatalytic properties of scandium (Sc) substituted bismuth ferrite (BSFO) particulate and fiber nanostructures. An increasing concentration of Sc was found to reduce the crystallite size, particle size and band gap energy of the BSFO nanostructures, which was evident from X-ray diffraction, field emission scanning electron microscopy and UV-Visible diffuse reflectance spectroscopy analysis respectively. The temperature dependent magnetic studies carried out using a SQUID magnetometer suggested that the origin of the magnetic properties in the pure BFO system could be the emergence of an antiferromagnetic-core/ferromagnetic-shell like structure, in contrast to the modified spin canted structures in the case of the BSFO nanostructures. The observed photocatalytic efficiency was attributed to the enhanced band bending process and recombination resistance in the BSFO nanostructures. For a comparative study, the photocatalytic activities of some selected compositions were also investigated under simulated solar light along with natural solar light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr06655g | DOI Listing |