98%
921
2 minutes
20
Rapamycin is a well-known inhibitor of the Target of Rapamycin (TOR) signaling cascade; however, the impact of this drug on global genome function and organization in normal primary cells is poorly understood. To explore this impact, we treated primary human foreskin fibroblasts with rapamycin and observed a decrease in cell proliferation without causing cell death. Upon rapamycin treatment chromosomes 18 and 10 were repositioned to a location similar to that of fibroblasts induced into quiescence by serum reduction. Although similar changes in positioning occurred, comparative transcriptome analyses demonstrated significant divergence in gene expression patterns between rapamycin-treated and quiescence-induced fibroblasts. Rapamycin treatment induced the upregulation of cytokine genes, including those from the Interleukin (IL)-6 signaling network, such as IL-8 and the Leukemia Inhibitory Factor (LIF), while quiescent fibroblasts demonstrated up-regulation of genes involved in the complement and coagulation cascade. In addition, genes significantly up-regulated by rapamycin treatment demonstrated increased promoter occupancy of the transcription factor Signal Transducer and Activator of Transcription 5A/B (STAT5A/B). In summary, we demonstrated that the treatment of fibroblasts with rapamycin decreased proliferation, caused chromosome territory repositioning and induced STAT5A/B-mediated changes in gene expression enriched for cytokines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915505 | PMC |
http://dx.doi.org/10.1080/19491034.2015.1128610 | DOI Listing |
Mol Biol Rep
September 2025
Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2025
Univ. of Pennsylvania, Medicine, Philadelphia, Pennsylvania, United States.
Lymphangioleiomyomatosis (LAM) is a rare lung disease caused by hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in a subset of mesenchymal lung cells. Histopathologically, LAM lesions have been described as immature smooth muscle-like cells positive for the immature melanocytic marker HMB45/PMEL/gp100 and phosphorylated ribosomal protein S6 (pS6). Advances in single cell sequencing (scRNA-seq) technology allowed us to group LAM cells according to their expression of cancer stem cell (CSC) genes and identify three clusters: a high CSC-like state (SLS), an intermediate state, and a low CSC-like inflammatory state (IS).
View Article and Find Full Text PDFCurr Opin Rheumatol
September 2025
University Medical Centre Ljubljana, Department of Rheumatology, Ljubljana.
Purpose Of Review: This review examines how metabolic reprogramming drives fibrosis and immune dysregulation in systemic sclerosis (SSc), emphasizing the role of nutrient-sensing and energy pathways in disease progression.
Recent Findings: SSc is characterized by a shift from catabolic to anabolic metabolism, defined by reduced AMP-activated protein kinase (AMPK) and enhanced mechanistic target of rapamycin complex 1 (mTORC1) signaling. This promotes biosynthetic activity, with upregulated glycolysis supplying substrates for collagen production and supporting pro-inflammatory immune cell polarization.
Exp Cell Res
September 2025
Department of Nephrology, The First Hospital of China Medical University, Shenyang 110004 Liaoning Province, China. Electronic address:
Renal fibrosis is the common pathological outcome of chronic kidney disease (CKD) progressing into end-stage renal disease. The excessive proliferation of fibroblasts plays an important role in the CKD progression. Nutrients such as amino acids and their transportation are essential for cell proliferation.
View Article and Find Full Text PDFAging Cell
September 2025
Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia.
Cellular senescence is a state of irreversible cell cycle arrest accompanied by a distinctive inflammatory secretory profile known as the senescence-associated secretory phenotype (SASP). While various biomarkers, such as senescence-associated beta-galactosidase (SA-βgal), EdU incorporation, p21 and p16, are used to identify senescent cells, no single biomarker universally defines cellular senescence and current methods often fail to address heterogeneity in biomarker expression levels. This study leverages single-cell fluorescence imaging to assess multiple senescence markers including SA-βgal enzymatic activity, p21 and IL-6 expression and nuclear and cell area in chemotherapy-induced (mitomycin C) and oxidative stress-induced (D-galactose) senescence models in human fibroblasts.
View Article and Find Full Text PDF