98%
921
2 minutes
20
Background: Acute management of traumatic brain injury (TBI), in particular mild TBI, focuses on the detection of the 5-7 % who may be harboring potentially life-threatening intracranial hemorrhage (IH) using CT scanning. Guidelines intending to reduce unnecessary head CT scans using available clinical variables to detect those at high IH risk have shown varying results. Recently, the Scandinavian Neurotrauma Committee (SNC) derived a new set of high-IH risk variables for adults with TBI using an evidence-based literature review. Unlike previous guidelines, the SNC guideline incorporates serum values of the brain protein S100B with clinical variables.
Methods: We performed a nested cohort study of adults with mild TBI presenting to six emergency departments in New York and Pennsylvania within 6 h of injury. Patients were managed according to existing guidelines for CT selection. All patients underwent head CT scanning and serum S100B measurement, as well as prospective collection of clinical variables, as a requirement of the parent study. Using the SNC guidelines, S100B values and clinical variables were applied to these subjects, classifying each into one of five pre-defined severity categories, as well as predicting the need for head CT scanning to identify IH. This classification was then compared to actual head CT results to determine guideline sensitivity and specificity.
Results: In total, 662 adults (mean age 42 years, range 18-96; 258 females, 549 Caucasians) were available for analysis; 36 (5%) had IH on head CT scan. The SNC guidelines had a sensitivity of 97% (95% CI, 84-100%) and a specificity of 34% (95% CI, 30-37%) for the detection of IH on head CT. Application of the SNC guidelines would have resulted in a CT reduction of 32% (211/662 patients). One patient with low-risk mild TBI and a S100B level under 0.10 μg/L had a traumatic CT abnormality and would have been discharged with strict adherence to the guidelines. However, this patient did not need any intervention for the injury and had a good outcome.
Conclusion: Using the SNC guideline could save approximately one third of CT scans in a pre-selected cohort of mild TBI patients with little or no impact on patient outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4673733 | PMC |
http://dx.doi.org/10.1186/s12916-015-0533-y | DOI Listing |
Alzheimers Dement
September 2025
Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.
We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.
View Article and Find Full Text PDFExp Neurol
September 2025
Division of Pharmacology and Pharmacotherapy, Drug Research Programme, Faculty of Pharmacy, University of Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland. Electronic address:
Traumatic brain injury (TBI) impacts up to 60 million people annually. Both severe TBIs and repeated mild TBIs (rmTBIs) can lead to persistent symptoms such as cognitive deficits, and even neurodegenerative diseases like chronic traumatic encephalopathy (CTE). To date, no therapies exist to mitigate the risk of CTE or other chronic symptoms post-TBI.
View Article and Find Full Text PDFJ Vitreoretin Dis
September 2025
iMIND Study Group, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
To assess retinal layer thickness and volume by optical coherence tomography (OCT) in patients with prior traumatic brain injury (TBI). Adults (≥18 years) with prior TBI were prospectively recruited. 512 × 128-mm macular cube scans were obtained using Zeiss Cirrus HD-5000 OCT.
View Article and Find Full Text PDFNeurotrauma Rep
August 2025
Shepherd Center, Acquired Brain Injury Rehabilitation, Atlanta, Georgia, USA.
Research on mild traumatic brain injury (mTBI) and its impact on young adults is limited, despite this being an important time in their lives to work toward independence and career development. We analyzed data on 663 persons aged 17-29 years old with mTBI (i.e.
View Article and Find Full Text PDFNeurotrauma Rep
August 2025
Population Health and Optimal Practices Research Unit (Trauma-Emergency-Critical Care Medicine), CHU de Québec-Université Laval Research Center, Québec City, Canada.
Pain is prevalent and a major source of disability after a traumatic brain injury (TBI) and a spinal cord injury (SCI). With a view of reducing the pain burden in neurotrauma, this study aimed to describe the use of pain management strategies and the adverse effects of opioids in patients with TBI and SCI. We collected data at hospital discharge (T1) and at 3 months post-injury (T2).
View Article and Find Full Text PDF