A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Minimizing the cost of locomotion with inclined trunk predicts crouched leg kinematics of small birds at realistic levels of elastic recoil. | LitMetric

Minimizing the cost of locomotion with inclined trunk predicts crouched leg kinematics of small birds at realistic levels of elastic recoil.

J Exp Biol

Department of Motion Science, Institute of Sport Science, Friedrich-Schiller-University Jena, Jena 07749, Germany Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum, Friedrich-Schiller-University Jena, Jena 07743, Germany.

Published: February 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Small birds move with pronograde trunk orientation and crouched legs. Although the pronograde trunk has been suggested to be beneficial for grounded running, the cause(s) of the specific leg kinematics are unknown. Here we show that three charadriiform bird species (northern lapwing, oystercatcher, and avocet; great examples of closely related species that differ remarkably in their hind limb design) move their leg segments during stance in a way that minimizes the cost of locomotion. We imposed measured trunk motions and ground reaction forces on a kinematic model of the birds. The model was used to search for leg configurations that minimize leg work that accounts for two factors: elastic recoil in the intertarsal joint, and cheaper negative muscle work relative to positive muscle work. A physiological level of elasticity (∼ 0.6) yielded segment motions that match the experimental data best, with a root mean square of angular deviations of ∼ 2.1 deg. This finding suggests that the exploitation of elastic recoil shapes the crouched leg kinematics of small birds under the constraint of pronograde trunk motion. Considering that an upright trunk and more extended legs likely decrease the cost of locomotion, our results imply that the cost of locomotion is a secondary movement criterion for small birds. Scaling arguments suggest that our approach may be utilized to provide new insights into the motion of extinct species such as dinosaurs.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.127910DOI Listing

Publication Analysis

Top Keywords

cost locomotion
16
small birds
16
leg kinematics
12
elastic recoil
12
pronograde trunk
12
crouched leg
8
kinematics small
8
muscle work
8
trunk
6
leg
6

Similar Publications