A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aging involves progressive loss of cellular function and integrity, presumably caused by accumulated stochastic damage to cells. Alterations in energy metabolism contribute to aging, but how energy metabolism changes with age, how these changes affect aging, and whether they can be modified to modulate aging remain unclear. In locomotory muscle of post-fertile Caenorhabditis elegans, we identified a progressive decrease in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), a longevity-associated metabolic enzyme, and a reciprocal increase in glycolytic pyruvate kinase (PK) that were necessary and sufficient to limit lifespan. Decline in PEPCK-C with age also led to loss of cellular function and integrity including muscle activity, and cellular senescence. Genetic and pharmacologic interventions of PEPCK-C, muscle activity, and AMPK signaling demonstrate that declines in PEPCK-C and muscle function with age interacted to limit reproductive life and lifespan via disrupted energy homeostasis. Quantifications of metabolic flux show that reciprocal changes in PEPCK-C and PK with age shunted energy metabolism toward glycolysis, reducing mitochondrial bioenergetics. Last, calorie restriction countered changes in PEPCK-C and PK with age to elicit anti-aging effects via TOR inhibition. Thus, a programmed metabolic event involving PEPCK-C and PK is a determinant of aging that can be modified to modulate aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714217PMC
http://dx.doi.org/10.1074/jbc.M115.691766DOI Listing

Publication Analysis

Top Keywords

energy metabolism
12
pepck-c age
12
reciprocal changes
8
phosphoenolpyruvate carboxykinase
8
pyruvate kinase
8
determinant aging
8
caenorhabditis elegans
8
loss cellular
8
cellular function
8
function integrity
8

Similar Publications