Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Classical simulations of simple water models reproduce many properties of the liquid and ice but overestimate the heat capacity by about 65% at ordinary temperatures and much more for low temperature ice. This is due to the fact that the atomic vibrations are quantum mechanical. The application of harmonic quantum corrections to the molecular motion results in good heat capacities for the liquid and for ice at low temperatures but a successively growing positive deviation from experimental results for ice above 200 K that reaches 15% just below melting. We suggest that this deviation is due to the lack of quantum corrections to the anharmonic motions. For the liquid, the anharmonicities are even larger but also softer and thus in less need of quantum correction. Therefore, harmonic quantum corrections to the classically calculated liquid heat capacities result in agreement with the experimental values. The classical model underestimates the heat of melting by 15%, while the application of quantum corrections produces fair agreement. On the other hand, the heat of vaporization is overestimated by 10% in the harmonically corrected classical model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ct2003034 | DOI Listing |