A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ubiquilin-2 drives NF-κB activity and cytosolic TDP-43 aggregation in neuronal cells. | LitMetric

Ubiquilin-2 drives NF-κB activity and cytosolic TDP-43 aggregation in neuronal cells.

Mol Brain

Research Centre of Institut Universitaire en Santé Mentale de Québec, Laval University, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Mutations in the gene encoding Ubiquilin-2 (UBQLN2) are linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). UBQLN2 plays a central role in ubiquitin proteasome system (UPS) and UBQLN2 mutants can form cytoplasmic aggregates in vitro and in vivo.

Results: Here, we report that overexpression of WT or mutant UBQLN2 species enhanced nuclear factor κB (NF-κB) activation in Neuro2A cells. The inhibition of NF-κB stress-mediated activation with SB203580, a p38 MAPK inhibitor, demonstrated a role for MAPK in NF-κB activation by UBQLN2 species. Live cell imaging and microscopy showed that UBQLN2 aggregates are dynamic structures that promote cytoplasmic accumulation of TAR DNA-binding protein (TDP-43), a major component of ALS inclusion bodies. Furthermore, up-regulation of UBQLN2 species in neurons caused an ER-stress response and increased their vulnerability to death by toxic mediator TNF-α. Withaferin A, a known NF-κB inhibitor, reduced mortality of Neuro2A cells overexpressing UBQLN2 species.

Conclusions: These results suggest that UBQLN2 dysregulation in neurons can drive NF-κB activation and cytosolic TDP-43 aggregation, supporting the concept of pathway convergence in ALS pathogenesis. These Ubiquilin-2 pathogenic pathways might represent suitable therapeutic targets for future ALS treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628361PMC
http://dx.doi.org/10.1186/s13041-015-0162-6DOI Listing

Publication Analysis

Top Keywords

ubqln2 species
12
nf-κb activation
12
ubqln2
9
cytosolic tdp-43
8
tdp-43 aggregation
8
neuro2a cells
8
nf-κb
6
ubiquilin-2 drives
4
drives nf-κb
4
nf-κb activity
4

Similar Publications