Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Subcortical vascular cognitive impairment (SVCI) refers to cognitive impairment associated with small vessel disease. Motor intentional disorders (MID) have been reported in patients with SVCI. However, there are no studies exploring the neuroanatomical regions related to MID in SVCI patients. The aim of this study, therefore, was to investigate the neural correlates of MID in SVCI patients. Thirty-one patients with SVCI as well as 10 healthy match control participants were included. A "Pinch-Grip" apparatus was used to quantify the force control capabilities of the index finger in four different movement phases including initiation, development, maintenance, and termination. All participants underwent magnetic resonance imaging (MRI). Topographical cortical areas and white matter tracts correlated with the performances of the four different movement phases were assessed by the surface-based morphometry and tract-based spatial statistics analyses. Poorer performance in the maintenance task was related to cortical thinning in bilateral dorsolateral prefrontal, orbitofrontal and parietal cortices, while poorer performance in the termination task was associated with the disruption of fronto-parietal cortical areas as well as the white matter tracts including splenium and association fibers such as superior longitudinal fasciculus. Our study demonstrates that cortical areas and underlying white matter tracts associated with fronto-parietal attentional system play an important role in motor impersistence and perseveration in SVCI patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00415-015-7946-6 | DOI Listing |