A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Activation of the Small G Protein Arf6 by Dynamin2 through Guanine Nucleotide Exchange Factors in Endocytosis. | LitMetric

Activation of the Small G Protein Arf6 by Dynamin2 through Guanine Nucleotide Exchange Factors in Endocytosis.

Sci Rep

Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan.

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The small G protein Arf6 and the GTPase dynamin2 (Dyn2) play key roles in clathrin-mediated endocytosis (CME). However, their functional relationship remains obscure. Here, we show that Arf6 functions as a downstream molecule of Dyn2 in CME. Wild type of Dyn2 overexpressed in HeLa cells markedly activates Arf6, while a GTPase-lacking Dyn2 mutant does not. Of the Arf6-specific guanine nucleotide exchange factors, EFA6A, EFA6B, and EFA6D specifically interact with Dyn2. Furthermore, overexpression of dominant negative mutants or knockdown of EFA6B and EFA6D significantly inhibit Dyn2-induced Arf6 activation. Finally, overexpression of the binding region peptide of EFA6B for Dyn2 or knockdown of EFA6B and EFA6D significantly suppresses clathrin-mediated transferrin uptake. These results provide evidence for a novel Arf6 activation mechanism by Dyn2 through EFA6B and EFA6D in CME in a manner dependent upon the GTPase activity of Dyn2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621509PMC
http://dx.doi.org/10.1038/srep14919DOI Listing

Publication Analysis

Top Keywords

efa6b efa6d
16
small protein
8
protein arf6
8
guanine nucleotide
8
nucleotide exchange
8
exchange factors
8
dyn2
8
knockdown efa6b
8
arf6 activation
8
arf6
6

Similar Publications