98%
921
2 minutes
20
Eight new ruthenium and five new osmium p-cymene half-sandwich complexes have been synthesized, characterized and evaluated for antimalarial activity. All complexes contain ligands that are based on a 4-chloroquinoline framework related to the antimalarial drug chloroquine. Ligands HL(1-8) are salicylaldimine derivatives, where HL(1) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine, and HL(2-8) contain non-hydrogen substituents in the 3-position of the salicylaldimine ring, viz. F, Cl, Br, I, NO2, OMe and (t)Bu for HL(2-8), respectively. Ligand HL(9) is also a salicylaldimine-containing ligand with substitutions in both 3- and 5-positions of the salicylaldimine moiety, i.e. N-(2-((2-hydroxy-3,5-di-tert-butylphenyl)methyl-imino)ethyl)-7-chloroquinolin-4-amine, while HL(10) is N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) The half sandwich metal complexes that have been investigated are [Ru(η(6)-cym)(L(1-8))Cl] (Ru-1-Ru-8, cym = p-cymene), [Os(η(6)-cym)(L(1-3,5,7))Cl] (Os-1-Os-3, Os-5, and Os-7), [M(η(6)-cym)(HL(9))Cl2] (M = Ru, Ru-HL(9); M = Os, Os-HL(9)) and [M(η(6)-cym)(L(10))Cl]Cl (M = Ru, Ru-10; M = Os, Os-10). In complexes Ru-1-Ru-8 and Ru-10, Os-1-Os-3, Os-5 and Os-7 and Os-10, the ligands were found to coordinate as bidentate N,O- and N,N-chelates, while in complexes Ru-HL(9) and Os-HL(9), monodentate coordination of the ligands through the quinoline nitrogen was established. The antimalarial activity of the new ligands and complexes was evaluated against chloroquine sensitive (NF54 and D10) and chloroquine resistant (Dd2) Plasmodium falciparum malaria parasite strains. Coordination of ruthenium and osmium arene moieties to the ligands resulted in lower antiplasmodial activities relative to the free ligands, but the resistance index is better for the ruthenium complexes compared to chloroquine. Overall, osmium complexes appeared to be less active than the corresponding ruthenium complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt02410b | DOI Listing |
Medicine (Baltimore)
September 2025
Department of Infectious Diseases, Third People's Hospital of Chengdu, Chengdu, China.
Rationale: Japanese spotted fever (JSF) is a rare tick-borne disease caused by Rickettsia japonica. Atypical manifestations and a lack of standardized diagnostic assays often result in delayed diagnosis and treatment, potentially leading to life-threatening complications.
Patient Concerns: A 57-year-old immunocompetent female from a region with no previously reported JSF cases presented with acute-onset high-grade fever (39.
ACS Infect Dis
September 2025
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States.
Malaria treatments are compromised by drug resistance, creating an urgent need to discover new drugs. We used a phenotypic high-throughput screening (HTS) platform to identify new antimalarials, uncovering three related pyrrole-, indole-, and indoline-based series with a shared α-azacyclic acetamide core. These compounds showed fast-killing activity on asexual blood-stage parasites, were not cytotoxic, and disrupted parasite intracellular pH and Na regulation similarly to cipargamin (KAE609), a clinically advanced inhibitor of the Na pump (ATP4).
View Article and Find Full Text PDFJ Med Chem
September 2025
Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
New treatment strategies are required to combat the spread of drug-resistant malaria. The synthesis and preclinical evaluation of novel 3-hydroxy-propanamidines (HPAs), with modifications of the phenanthrene and the 4-fluorobenzamidine moieties, has yielded several analogs exhibiting excellent in vitro growth inhibition of drug-sensitive or resistant fresh clinical isolates and culture-adapted strains. No cytotoxicity in the human HepG2 cell line was observed, demonstrating notable parasite selectivity.
View Article and Find Full Text PDFChem Biodivers
September 2025
Institute of Chemistry, Federal University of Catalão, Catalão, Brazil.
Strategies have been employed to address antimalarial drug resistance, including the exploration of new therapeutic targets. In this study, the stem bark of Dalbergia miscolobium was investigated using in vitro assays against Plasmodium falciparum and pyruvate kinase II (PyrKII), an essential enzyme for parasite development. Compounds were dereplicated from ethanolic extract (IC = 9 µg/mL) using LC-HRMS, revealing active constituents: procyanidin A1 (2), biochanin (5) and formononetin (7).
View Article and Find Full Text PDFOncol Res
September 2025
Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
Objectives: Ovarian cancer, a leading cause of gynecological malignancy-related mortality, is characterized by limited therapeutic options and a poor prognosis. Although pyrimethamine has emerged as a promising candidate demonstrating efficacy in treating various tumors, the precise mechanisms of its antitumor effects remain obscure. This study was specifically designed to investigate the mode of action underlying the antitumor effects of pyrimethamine in preclinical settings.
View Article and Find Full Text PDF