Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Elemental selenium (Se) was recently found to exist as endogenous nanoparticles (i.e., SeNPs) in selenite-exposed cancer cells. By sequestrating critical intracellular proteins, SeNPs appear capable of giving rise to multiple cytotoxicity mechanisms including inhibition of glycolysis, glycolysis-dependent mitochondrial dysfunction, microtubule depolymerization and inhibition of autophagy. In this work, we reveal a dynamic equilibrium of endogenous SeNP assembly and disassembly in selenite-exposed H157 cells. Endogenous SeNPs are observed both in the cytoplasm and in organelles. There is an increase in endogenous SeNPs between 24 h and 36 h, and a decrease between 36 h and 72 h according to transmission electron microscopy results and UV-Vis measurements. These observations imply that elemental Se in SeNPs could be oxidized back into selenite by scavenging superoxide radicals and ultimately re-reduced into selenide; then the assembly and disassembly of SeNPs proceed simultaneously with the sequestration and release of SeNP high-affinity proteins. There is also a possibility that the reduction of elemental Se to selenide pathway may lie in selenite-exposed cancer cells, which results in the assembly and disassembly of endogenous SeNPs. Genome-wide expression analysis results show that endogenous SeNPs significantly altered the expression of 504 genes, compared to the control. The endogenous SeNPs induced mitochondrial impairment and decreasing of the annexin A2 level can lead to inhibition of cancer cell invasion and migration. This dynamic flux of endogenous SeNPs amplifies their cytotoxic potential in cancer cells, thus provide a starting point to design more efficient intracellular self-assembling systems for overcoming multidrug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5mb00555hDOI Listing

Publication Analysis

Top Keywords

endogenous senps
28
cancer cells
16
selenite-exposed cancer
12
assembly disassembly
12
senps
11
endogenous
10
dynamic equilibrium
8
equilibrium endogenous
8
cancer
5
cells
5

Similar Publications

Nitric oxide (NO) is a therapeutic gas molecule involved in numerous physiological and pathological processes. However, its clinical application is limited by its short half-life and limited diffusion distance in human tissues, necessitating the development of effective NO delivery strategies. NO generation via catalytic decomposition of endogenous NO donors has emerged as a promising approach.

View Article and Find Full Text PDF

Previous studies of green synthesized selenium nanoparticles (SeNPs) showed their unique properties such as antibacterial activity, biocompatibility, and antioxidant properties. This study aimed to use traditional Zambian medicinal herbs (Azadirachta indica, Moringa oleifera Gliricidia sepium, Cissus quadrangularis, Aloe barbadensis, Kigelia Africana, and Bobgunnia madagascariensis) to synthesize SeNPs and examine their potential to enhance the endogenous antioxidant system of model eukaryote. For SeNP characterization, dynamic light scattering, scanning electron microscopy, Fourier transform infrared spectroscopy,and absorbance spectra were used.

View Article and Find Full Text PDF

Characterization of endogenous SUMOylation sites by click chemistry-based proteomics.

Anal Bioanal Chem

August 2025

Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China.

SUMOylation, an essential ubiquitin-like modification in eukaryotes, plays vital roles in both physiological and pathological regulation, positioning it as a promising therapeutic target. However, the low abundance of SUMOylation and the high enzymatic activity of sentrin/SUMO-specific proteases (SENPs) complicate the identification of endogenous sites. In this study, we integrated click chemistry, acid cleavage, and SUMOylated peptide enrichment into the workflow and developed a promising methodology for system-wide identification of SUMOylation sites.

View Article and Find Full Text PDF

Selenium nanoparticles as catalysts for nitric oxide generation.

Colloids Surf B Biointerfaces

July 2025

School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia. Electronic address:

The critical role of nitric oxide (NO), a potent signalling molecule, in various physiological processes has driven the development of NO delivery strategies for numerous therapeutic applications. However, NO's short half-life poses a significant challenge for its effective delivery. Glutathione peroxidase, a selenium-containing antioxidant enzyme, can catalyse the decomposition of S-nitrosothiols (endogenous NO prodrugs) to produce NO in situ.

View Article and Find Full Text PDF

Studies on adolescent rats, when body composition is changing deeply, reveal that the administration of sodium selenite and selenium nanoparticles (SeNPs), at the same dose, have opposite effects on adipogenesis in white adipose tissue (WAT). To investigate the mechanisms involved in these contrasting effects by means of transcriptomic analysis, three groups of male adolescent rats ( = 18) were used: control (C), selenite supplemented (S), and SeNPs supplemented (NS). Both treated groups received a twofold increase in Se dose compared to the control group through water intake for three weeks.

View Article and Find Full Text PDF