Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The noncovalent dyad of tetraphenylporphine and C60 fullerene (H2TPP···C60) and the tetraphenylporphine dimer (H2TPP···H2TPP) were studied by density functional theory (DFT), using functionals that incorporate empirical dispersion correction (DFT-D), functionals that use a long-range correction (LC) scheme, a hybrid functional (B3LYP) and a highly parametrized empirical exchange-correlation functional (M05-2X). The results were compared to X-ray structures and interaction energies reported in previous experimental and theoretical studies. It was found that B3LYP and CAM-B3LYP functionals fail to reproduce the X-ray structures and binding energies of the TPP···C60 system. DFT-D functionals overestimated the π···π energy interactions for both systems, however, the optimized structures agree well with those observed experimentally. The LC-BLYP functional predicts geometries similar to X-ray structures; nevertheless, due to the lack of correction in the dispersion energy, the predicted energies for both model systems are low. On the other hand, the M05-2X functional exhibited the best performance. Both the structures and binding energies calculated with M05-2X are consistent with experimental and theoretical evidence reported by other authors, as well as with our experimental results obtained by means of atomic force microscopy on H2TPP thin films grown on the HOPG/C60 substrate by physical vapor deposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp03921e | DOI Listing |