98%
921
2 minutes
20
The classification of outdoor air pollution as carcinogenic for humans strengthens the increasing concern about particulate matter (PM). We previously demonstrated that PM exposure produces an antiapoptotic effect resulting from polycyclic aromatic hydrocarbons (PAH) and water-soluble components. In this study, we investigated transition metallic compounds, particularly iron, in order to decipher their underlying molecular mechanisms that prevent apoptosis. Human bronchial epithelial cells were exposed for 4 h to different PM samples with established antiapoptotic effect (e.g. PM-AW) or not (e.g. PM-VS) or to their metallic components (Fe, Mn, Zn and Al) before apoptosis induction by the calcium ionophore A23187 or Staurosporine. PM-AW, Fe, Mn and Al significantly reduced induced apoptosis. The antiapoptotic effect of Fe was enhanced by benzo(a)pyrene, a typical PAH compound, but was totally reversed by the iron chelator, deferiprone. Furthermore, particles and iron triggered cellular ROS generation and prevented the depletion in glutathione levels observed during A23187-induced apoptosis. In contrast to benzo(a)pyrene, PM-AW and Fe rapidly activated NRF2, subsequently upregulated several target genes (HO1, NQO1 and GPX1) and modulated some genes which control cell death (BCL2, BAX and p53). The key role of the NRF2 pathway in the antiapoptotic effect mediated by Fe and PM was demonstrated using siRNA technology. Our results suggest that the iron component participates in the antiapoptotic effect of PM by activating a NRF2-dependent antioxidant process. As resisting to cell death is one of the hallmarks of cancer cells, these findings provide additional clues for understanding the development of lung cancer after atmospheric pollution exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2015.09.030 | DOI Listing |
Nat Commun
September 2025
Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Precise control of spin states and spin-spin interactions in atomic-scale magnetic structures is crucial for spin-based quantum technologies. A promising architecture is molecular spin systems, which offer chemical tunability and scalability for larger structures. An essential component, in addition to the qubits themselves, is switchable qubit-qubit interactions that can be individually addressed.
View Article and Find Full Text PDFJ Pharm Sci
September 2025
School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil. Electronic address:
Ferritin is a shell-like carrier protein with an 8 nm diameter cavity that naturally provides a space for encapsulating food and drug components. In the absence of iron atoms bound to this protein, it is called apoferritin, the form used in this study. However, its vulnerability to environmental conditions when used alone warrants further investigation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305.
The iron-based high-[Formula: see text] superconductors (SCs) exhibit rich phase diagrams with intertwined phases, including magnetism, nematicity, and superconductivity. The superconducting [Formula: see text] in many of these materials is maximized in the regime of strong nematic fluctuations, making the role of nematicity in influencing the superconductivity a topic of intense research. Here, we use the AC elastocaloric effect (ECE) to map out the phase diagram of Ba(FeCo)As near optimal doping.
View Article and Find Full Text PDFRadiat Prot Dosimetry
September 2025
Department of Radiation Safety and Security, Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232 Villigen, Switzerland.
The High-Intensity Proton Accelerator Facility at the Paul Scherrer Institute (PSI) accelerates protons to an energy of 590 MeV with currents up to 2.4 mA, i.e.
View Article and Find Full Text PDFFront Oncol
August 2025
The First Clinical School of Nanjing University of Chinese Medicine, Nanjing, China.
Ferroptosis is a regulated, non-apoptotic form of cell death marked by the accumulation of iron-dependent lipid peroxides. This process causes rapid rupture of the plasma membrane and the release of intracellular contents. Ferroptosis acts as an intrinsic tumor-suppressive mechanism.
View Article and Find Full Text PDF