98%
921
2 minutes
20
Spatial and temporal features of synaptic inputs engage integration mechanisms on multiple scales, including presynaptic release sites, postsynaptic dendrites, and networks of inhibitory interneurons. Here we investigate how these mechanisms cooperate to filter synaptic input in hippocampal area CA1. Dendritic recordings from CA1 pyramidal neurons reveal that proximal inputs from CA3 as well as distal inputs from entorhinal cortex layer III (ECIII) sum sublinearly or linearly at low firing rates due to feedforward inhibition, but sum supralinearly at high firing rates due to synaptic facilitation, producing a high-pass filter. However, during ECIII and CA3 input comparison, supralinear dendritic integration is dynamically balanced by feedforward and feedback inhibition, resulting in suppression of dendritic complex spiking. We find that a particular subpopulation of CA1 interneurons expressing neuropeptide Y (NPY) contributes prominently to this dynamic filter by integrating both ECIII and CA3 input pathways and potently inhibiting CA1 pyramidal neuron dendrites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2015.08.025 | DOI Listing |
J Med Internet Res
September 2025
School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, Republic of Korea.
Background: Owing to the unique characteristics of digital health interventions (DHIs), a tailored approach to economic evaluation is needed-one that is distinct from that used for pharmacotherapy. However, the absence of clear guidelines in this area is a substantial gap in the evaluation framework.
Objective: This study aims to systematically review and compare the economic evaluation literature on DHIs and pharmacotherapy for the treatment of depression.
Temperature (Austin)
June 2025
Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Sweating is a vital thermoregulatory mechanism in humans for maintaining thermal balance during exercise and exposure to hot environments. The development of models that predict sweat rate based on body temperature has been ongoing for over half a century. Here, we compared predicted water loss rates (WLR) from these models to actual observations collected during 780 participant-exposures in three independent laboratory-based experiments.
View Article and Find Full Text PDFJ Nucl Med Technol
September 2025
Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and the General University Hospital in Prague, Prague, Czech Republic;
The aim of the study was to validate a new method for semiautomatic subtraction of [Tc]Tc-sestamibi and [Tc]NaTcO SPECT 3-dimensional datasets using principal component analysis (PCA) against the results of parathyroid surgery and to compare its performance with an interactive method for visual comparison of images. We also sought to identify factors that affect the accuracy of lesion detection using the two methods. Scintigraphic data from [Tc]Tc-sestamibi and [Tc]NaTcO SPECT were analyzed using semiautomatic subtraction of the 2 registered datasets based on PCA applied to the region of interest including the thyroid and an interactive method for visual comparison of the 2 image datasets.
View Article and Find Full Text PDFPLoS One
September 2025
School of Electrical and Information Engineering, Hunan Institute of Technology, Hengyang, Hunan, China.
Knowledge tracing can reveal students' level of knowledge in relation to their learning performance. Recently, plenty of machine learning algorithms have been proposed to exploit to implement knowledge tracing and have achieved promising outcomes. However, most of the previous approaches were unable to cope with long sequence time-series prediction, which is more valuable than short sequence prediction that is extensively utilized in current knowledge-tracing studies.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, Rennes F-35000, France.
We present the first dataset of collisional (de)-excitation rate coefficients of HCN induced by CO, one of the main perturbing gases in cometary atmospheres. The dataset spans the temperature range of 5-50 K. It includes both state-to-state rate coefficients involving the lowest ten and nine rotational levels of HCN and CO, respectively, and the so-called "thermalized" rate coefficients over the rotational population of CO at each kinetic temperature.
View Article and Find Full Text PDF