Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Pmel17 is the major component of functional amyloid fibrils that have an important role during pigment deposition. Pmel17 polymerization is promoted within the mildly acidic conditions of melanosomes, organelles located in pigment-specific cells. A repeat domain (RPT domain) of Pmel17, rich in glutamic acid residues has been extensively associated with the formation of the fibrous matrix. Here, we examine the RPT domain of human Pmel17 in order to provide information on this mechanism. Specifically, we have identified an aggregation-prone peptide segment ((405) VSIVVLSGT(413) ), close to the C-terminal part of the RPT domain. Experimental results utilizing electron microscopy, X-ray fiber diffraction, Congo red staining and ATR FT-IR spectroscopy indicate that this peptide segment self-assembles forming fibrils with evident amyloidogenic properties. Conclusively, our results demonstrate that the (405) VSIVVLSGT(413) peptide segment possibly has an essential role in RPT domain fibrillogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.22746 | DOI Listing |