Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The hyperbolic frequency-modulated (HFM) waveform has an inherent Doppler-invariant property. It is more conducive than the conventional linear frequency-modulated (LFM) waveform to high speed moving target imaging. In order to apply the HFM waveform to existing inverse synthetic aperture radar (ISAR) imaging systems, a new pulse compression algorithm is proposed. First, the received HFM echoes are demodulated with the transmitted signal, which is called "decurve" in this paper. By this operation, the bandwidth of the demodulated echoes is effectively reduced and can be processed by the existing narrow-band receiver. Then, the phase of the decurved HFM echoes is analyzed, and thus, the pulse compression is accomplished by space-variant phase compensation. In addition, the space-variant phase compensation is realized by resampling and fast Fourier transform (FFT) with high computational efficiency. Finally, numerical results illustrate the effectiveness of the proposed method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610492 | PMC |
http://dx.doi.org/10.3390/s150923188 | DOI Listing |