A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Bioinformatics Approaches for Predicting Disordered Protein Motifs. | LitMetric

Bioinformatics Approaches for Predicting Disordered Protein Motifs.

Adv Exp Med Biol

VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium.

Published: December 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Short, linear motifs (SLiMs) in proteins are functional microdomains consisting of contiguous residue segments along the protein sequence, typically not more than 10 consecutive amino acids in length with less than 5 defined positions. Many positions are 'degenerate' thus offering flexibility in terms of the amino acid types allowed at those positions. Their short length and degenerate nature confers evolutionary plasticity meaning that SLiMs often evolve convergently. Further, SLiMs have a propensity to occur within intrinsically unstructured protein segments and this confers versatile functionality to unstructured regions of the proteome. SLiMs mediate multiple types of protein interactions based on domain-peptide recognition and guide functions including posttranslational modifications, subcellular localization of proteins, and ligand binding. SLiMs thus behave as modular interaction units that confer versatility to protein function and SLiM-mediated interactions are increasingly being recognized as therapeutic targets. In this chapter we start with a brief description about the properties of SLiMs and their interactions and then move on to discuss algorithms and tools including several web-based methods that enable the discovery of novel SLiMs (de novo motif discovery) as well as the prediction of novel occurrences of known SLiMs. Both individual amino acid sequences as well as sets of protein sequences can be scanned using these methods to obtain statistically overrepresented sequence patterns. Lists of putatively functional SLiMs are then assembled based on parameters such as evolutionary sequence conservation, disorder scores, structural data, gene ontology terms and other contextual information that helps to assess the functional credibility or significance of these motifs. These bioinformatics methods should certainly guide experiments aimed at motif discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-20164-1_9DOI Listing

Publication Analysis

Top Keywords

slims
9
amino acid
8
motif discovery
8
protein
6
bioinformatics approaches
4
approaches predicting
4
predicting disordered
4
disordered protein
4
protein motifs
4
motifs short
4

Similar Publications