98%
921
2 minutes
20
The accumulation of amyloid-beta (Aβ) peptides, a pathologic hallmark of Alzheimer's disease, has been associated with functional alterations in cognitively normal elderly, most often in the context of episodic memory with a particular emphasis on the medial temporal lobes. The topography of Aβ deposition, however, highly overlaps with frontoparietal control (FPC) regions implicated in cognitive control/working memory. To examine Aβ-related functional alternations in the FPC regions during a working memory task, we imaged 42 young and 57 cognitively normal elderly using functional magnetic resonance imaging during a letter Sternberg task with varying load. Based on (18)F-florbetaben-positron emission tomography scan, we determined older subjects' amyloid positivity (Aβ+) status. Within brain regions commonly recruited by all subject groups during the delay period, age and Aβ deposition were independently associated with load-dependent frontoparietal hyperactivation, whereas additional compensatory Aβ-related hyperactivity was found beyond the FPC regions. The present results suggest that Aβ-related hyperactivation is not specific to the episodic memory system but occurs in the PFC regions as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788982 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2015.08.016 | DOI Listing |
Cerebellum
September 2025
Neuropsychology and Applied Cognitive Neuroscience Laboratory, State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
Reward processing involves several components, including reward anticipation, cost-effort computation, reward consumption, reward sensitivity, and reward learning. Recent research has highlighted the cerebellum's role in reward processing. This study aimed to investigate the effects of cerebellar stimulation on reward processing using high-definition transcranial direct current stimulation (HD-tDCS).
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Brain ischemia is a major global cause of disability, frequently leading to psychoneurological issues. This study investigates the effects of 4-aminopyridine (4-AP) on anxiety, cognitive impairment, and potential underlying mechanisms in a mouse model of medial prefrontal cortex (mPFC) ischemia. Mice with mPFC ischemia were treated with normal saline (NS) or different doses of 4-AP (250, 500, and 1000 µg/kg) for 14 consecutive days.
View Article and Find Full Text PDFInflammopharmacology
September 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Giza, Egypt.
The neuroprotective potential of tyrosine kinase inhibitors (TKIs), potent anticancer drugs, was verified against various neurodegenerative insults, but not Huntington's disease (HD). These promising outcomes were due to their ability to modulate various intracellular signalling pathways. Hence, the current study aimed to evaluate the neuroprotective effects of lapatinib and pazopanib in the 3-nitropropionic (3-NP)-induced HD model in rats.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.
View Article and Find Full Text PDFActa Physiol (Oxf)
October 2025
Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
Background: The cerebral circulation is continuously challenged by intravascular micrometer-sized particles that become trapped microvascular-emboli. These particles may include micro-thrombi, stiffened erythrocytes, and leukocytes, while also fat particles, air, and microplastics may cause microvascular embolism.
Review Scope: In this narrative review, we discuss these embolization processes and their acute and chronic consequences.