98%
921
2 minutes
20
Homocysteine (Hcy) is a nonproteogenic sulfur containing amino acid derived from dietary methionine through demethylation. Homocysteine can be re-methylated to methionine [precursor of S-adenosylmethionine (SAM)] via the re-methylation or 5-methyltetrahydrofolate pathway or undergoes transsulfuration to form cysteine by the action of metabolic enzymes and cofactors. Impaired metabolism due to genetic alteration in metabolic enzymes (methionine synthase, methyltetrahydrofolate reductase (MTHFR), cystathionine β-synthase (CβS), and cystathionine-γ-lyase (CγL) or deficiency in cofactors (vitamin B6 , B12 , folate) may lead to acquired metabolic anomaly known as hyperhomocysteinemia. Hcy excess decreases the S-adenosylmethionine (SAM)-dependent synthesis of catecholamines, viz. dopamine, norepinephrine, epinephrine, and noncatecholamine, viz. serotonin (5-HT), due to genetic alteration in key enzyme MTHFR in the homocysteine metabolism pathway that leads to depression. Thus, hyperhomocysteinemia (HHcy)-induced SAM level is influenced by the single nucleotide polymorphism (SNP) MTHFR C677T. Furthermore, HHcy leads to production of precarious neurotoxic product homocysteic acid (HCA) and cysteine sulfinic acid (CSA) which acts as an N-methyl-D-aspartate (NMDA) receptor agonist and has neurotoxic effects on dopaminergic neurons. In the current review, an attempt has been made to discuss the neurotoxic effects of HHcy in the pathogenesis of depression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/fcp.12145 | DOI Listing |
J Proteome Res
September 2025
Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States.
Retinol binding protein 4 (RBP4), the circulating carrier of retinol, complexes with transthyretin (TTR) and is a potential biomarker of cardiometabolic disease. However, RBP4 quantitation relies on immunoassays and Western blots without retinol and TTR measurement. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous absolute quantitation of circulating RBP4 and TTR is critical to establishing their biomarker potential.
View Article and Find Full Text PDFNeurochem Res
September 2025
Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.
View Article and Find Full Text PDFVet Res Commun
September 2025
Department of Physiology, Faculty of Veterinary Medicine, Cairo University, PO 11221, Giza, Egypt.
This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.
View Article and Find Full Text PDFLung
September 2025
Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.
View Article and Find Full Text PDFMol Biol Rep
September 2025
School of Pharmacy, Heilongjiang University of Chinese Medicine, NO 24 Heping Road, 150040, Harbin, P. R. China.
Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.
View Article and Find Full Text PDF