98%
921
2 minutes
20
Differing stimuli affect cell stiffness while cancer metastasis is associated with reduced cell stiffness. Cell stiffness determined by atomic force microscopy has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. Ninety μm square fields were recorded from ten separate sites of cultured human dermal fibroblasts (HDF) and three sites each for melanoma (MM39, WM175, and MeIRMu), osteosarcoma (SAOS-2 and U2OS), and ovarian carcinoma (COLO316 and PEO4) cell lines, each site providing 1024 measurements as 32 × 32 square grids. Stiffness recorded below 0.8 μm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 μm was analysed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p < 0.0001) and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high-height levels. We suggest that our stiffness-fingerprint analytical method provides a more nuanced description than previously reported and will facilitate study of the stiffness response to cell stimulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4874187 | PMC |
http://dx.doi.org/10.1007/s00418-015-1363-x | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.
View Article and Find Full Text PDFNeurology
October 2025
Department of Neurology, Mayo Clinic, Rochester, MN.
Monoclonal gammopathy-associated myopathies (MGAMs) are rare yet treatable myopathies that occur in association with monoclonal gammopathies. These myopathies include light chain (AL) amyloidosis myopathy, sporadic late-onset nemaline myopathy (SLONM), scleromyxedema with associated myopathy, and newly reported monoclonal gammopathy-associated glycogen storage myopathy (MGGSM), including the vacuolar myopathy with monoclonal gammopathy and stiffness. All these 4 distinct subtypes of MGAMs typically present in patients aged 40 or older, frequently with a subacute onset of rapidly progressive proximal and axial muscle weakness.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.
View Article and Find Full Text PDFInterv Neuroradiol
September 2025
Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan.
BackgroundA stable guiding system is essential for successful carotid artery stenting (CAS), particularly when navigating tortuous aortic or supra-aortic anatomy. However, data on the mechanical behavior of stent delivery systems remain scarce.ObjectiveTo assess and compare the bending stiffness and trackability of five commercially available carotid stent delivery systems using bench-top experiments.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Department of Pharmacy, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, Malaysia.
Sickle cell disease (SCD) is an inherited blood disorder marked by the production of abnormal hemoglobin, leading to the distortion-or sickling-of red blood cells. The SCD arises from a single-point mutation that substitutes glutamic acid with valine at the sixth codon of the β-globin chain in hemoglobin. This substitution promotes deoxyhemoglobin aggregation, elevating red blood cell stiffness, and triggering vaso-occlusive and hemolytic repercussions.
View Article and Find Full Text PDF