A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effect of the set anode potential (between + 200 mV and - 200 mV vs. SHE, standard hydrogen electrode) on the performance and distribution of internal potential losses has been analyzed in a continuous-flow methane-producing microbial electrolysis cell (MEC).Both acetate removal rate (at the anode) and methane generation rate (at the cathode) were higher (1 gCOD/L day and 0.30 m(3)/m(3) day, respectively) when the anode potential was controlled at + 200 mV. However, both the yields of acetate conversion into current and current conversion into methane were very high (72-90%) under all the tested conditions. Moreover, the sum of internal potential losses decreased from 1.46 V to 0.69 V as the anode potential was decreased from + 200 mV to - 200 mV, with cathode overpotentials always representing the main potential losses. This was likely to be due to the high energy barrier which has to be overcome in order to activate the cathode reaction. Finally, the energy efficiency correspondingly increased reaching 120% when the anode was controlled at - 200 mV.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2015.07.008DOI Listing

Publication Analysis

Top Keywords

anode potential
16
potential losses
12
set anode
8
methane-producing microbial
8
microbial electrolysis
8
electrolysis cell
8
200 200
8
internal potential
8
controlled 200
8
potential
7

Similar Publications