98%
921
2 minutes
20
A microfluidic chip for cross-linked enzyme crystals (McCLEC) is presented and demonstrated to be a stable, reusable and robust biocatalyst-based device with very promising biotechnological applications. The cost-effective microfluidic platform allows in situ crystallization, cross-linking and enzymatic reaction assays on a single device. A large number of enzymatic reuses of the McCLEC platform were achieved and a comparative analysis is shown illustrating the efficiency of the process and its storage stability for more than one year.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5lc00776c | DOI Listing |
Lab Chip
October 2015
Laboratorio de Estudios Cristalográficos, Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda de las Palmeras, 4, 18100 Armilla, Granada, Spain.
A microfluidic chip for cross-linked enzyme crystals (McCLEC) is presented and demonstrated to be a stable, reusable and robust biocatalyst-based device with very promising biotechnological applications. The cost-effective microfluidic platform allows in situ crystallization, cross-linking and enzymatic reaction assays on a single device. A large number of enzymatic reuses of the McCLEC platform were achieved and a comparative analysis is shown illustrating the efficiency of the process and its storage stability for more than one year.
View Article and Find Full Text PDF