Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Microbes transiently differentiate into distinct, specialized cell types to generate functional diversity and cope with changing environmental conditions. Though alternate programs often entail radically different physiological and morphological states, recent single-cell studies have revealed that these crucial decisions are often left to chance. In these cases, the underlying genetic circuits leverage the intrinsic stochasticity of intracellular chemistry to drive transition between states. Understanding how these circuits transform transient gene expression fluctuations into lasting phenotypic programs will require a combination of quantitative modeling and extensive, time-resolved observation of switching events in single cells. In this article, we survey microbial cell fate decisions demonstrated to involve a random element, describe theoretical frameworks for understanding stochastic switching between states, and highlight recent advances in microfluidics that will enable characterization of key dynamic features of these circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-micro-091213-112852 | DOI Listing |