A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Joint kinematics from functional adaptation: A validation on the tibio-talar articulation. | LitMetric

Joint kinematics from functional adaptation: A validation on the tibio-talar articulation.

J Biomech

Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR) Alma Mater Studiorum - University of Bologna, Italy; Department of Mechanical Engineering, Alma Mater Studiorum - University of Bologna, Italy.

Published: September 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biologic tissues respond to the biomechanical conditions to which they are exposed by modifying their architecture. Experimental evidence from the literature suggests that the aim of this process is the mechanical optimization of the tissues (functional adaptation). In particular, this process must produce articular surfaces that, in physiological working conditions, optimize the contact load distribution or, equivalently, maximize the joint congruence. It is thus possible to identify the space of adapted joint configurations (or adapted space of motion) starting solely from knowledge of the shape of the articular surfaces, by determining the envelope of the maximum congruence configurations. The aim of this work was to validate this hypothesis by testing its application on 10 human ankle joints. Digitalizations of articular surfaces were acquired in 10 in-vitro experimental sessions, together with the natural passive tibio-talar motion, which may be considered as representative of the adapted space of motion. This latter was predicted numerically by optimizing the joint congruence. The highest mean absolute errors between each component of predicted and experimental motion were 2.07° and 2.29 mm respectively for the three rotations and translations. The present kinematic model replicated the experimentally observed motion well, providing a reliable subject-specific representation of the joint motion starting solely from articulating surface shapes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2015.07.042DOI Listing

Publication Analysis

Top Keywords

articular surfaces
12
functional adaptation
8
joint congruence
8
adapted space
8
space motion
8
motion starting
8
starting solely
8
motion
6
joint
5
joint kinematics
4

Similar Publications