98%
921
2 minutes
20
Objective: To identify clinical criteria for selecting the aiding device for the contralateral ear of children with a unilateral cochlear implant (CI).
Methods: Sixty-five children, including 36 bilateral CI users and 29 bimodal users, participated in the study. A speech perception test (monosyllabic word test) in noise was administered. The target speech (65 dB sound pressure level) was presented from the front loudspeaker, and noise (10 dB signal-to-noise ratio) was presented from 3 directions: from in front of the child and 90° to the child's right and left sides. The test was performed using the first CI alone and under bilateral CI or bimodal conditions. The bilateral benefits to speech perception in noise were compared between bilateral CI users and bimodal users.
Results: Significant benefits in speech perception in noise were evident in bilateral CI users in all 3 noise conditions. In bimodal users, the hearing threshold at low frequencies of ≤1 kHz in the nonimplanted ear affected the bilateral benefit. Bimodal users with a low-frequency hearing threshold ≤90 dB hearing level (HL) showed a significant bilateral benefit in various noise conditions. By contrast, bimodal users with a low-frequency hearing threshold >90 dB HL showed no significant bilateral benefits in all 3 noise conditions.
Conclusions: Bilateral CI and bimodal listening provide better speech perception in noise than unilateral CI alone in children. The contralateral CI is better than bimodal listening for children with a low-frequency hearing threshold >90 dB HL. A hearing threshold at low frequencies of ≤1 kHz may be a good criterion for deciding on the type of device for the contralateral ear of children with a unilateral CI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000433509 | DOI Listing |
Int J Audiol
September 2025
Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University "LETI", St. Petersburg, Russia.
Objective: To evaluate speech perception deficit compensation and predict potential hearing aids (HA) effectiveness in patients with hearing loss (HL).
Design: The patients underwent pure-tone audiometry and various speech tests in quiet (evaluating the peripheral auditory system and cognitive compensation) and in noise (to quantify central compensation through auditory processing and cognitive abilities).
Study Sample: 513 HL patients aged 19-93 years, including 403 HA users.
Trends Hear
September 2025
Department of Otolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
Individuals with tinnitus hear sounds that are not present in the external environment. Whereas hearing difficulties at frequencies near those matching the tinnitus pitch are a common complaint for individuals with tinnitus, it is unclear to what extent the internal tinnitus sounds interfere with the detection of external sounds. We therefore studied whether pure-tone detection at the estimated frequency corresponding to the tinnitus pitch (f) was affected by confusion with the tinnitus percept.
View Article and Find Full Text PDFEar Hear
September 2025
Department of Otorhinolaryngology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands.
Objectives: Alexithymia is characterized by difficulties in identifying and describing one's own emotions. Alexithymia has previously been associated with deficits in the processing of emotional information at both behavioral and neurobiological levels, and some studies have shown elevated levels of alexithymic traits in adults with hearing loss. This explorative study investigated alexithymia in young and adolescent school-age children with hearing aids in relation to (1) a sample of age-matched children with normal hearing, (2) age, (3) hearing thresholds, and (4) vocal emotion recognition.
View Article and Find Full Text PDFEar Hear
September 2025
Department of Otolaryngology, Head and Neck Surgery, Kyushu University, Fukuoka, Japan.
Objectives: This study aimed to investigate the potential contribution of subtle peripheral auditory dysfunction to listening difficulties (LiD) using a threshold-equalizing noise (TEN) test and distortion-product otoacoustic emissions (DPOAE). We hypothesized that a subset of patients with LiD have undetectable peripheral auditory dysfunction.
Design: This case-control study included 61 patients (12 to 53 years old; male/female, 18/43) in the LiD group and 22 volunteers (12 to 59 years old; male/female, 10/12) in the control group.
Adv Sci (Weinh)
September 2025
ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Brain Function and Disorders and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
Noise-induced hearing loss (NIHL), caused by irreversible cochlear hair cell (HC) damage, lacks effective therapies due to a limited understanding of endogenous protective mechanisms. The echolocating bats exhibit natural resistance to intense noise, and this suggested novel insights into methods to protect against NIHL. Here, through comparative transcriptomic analysis of noise-exposed cochleae from the eastern bent-winged bats (Miniopterus fuliginosus) and mice, the specific transcriptional dynamics in noise-resistant Miniopterus fuliginosus are revealed, thus highlighting potential mechanisms for preventing cochlear damage that mouse models cannot replicate, with Hras emerging as the most significant hub upregulator.
View Article and Find Full Text PDF