98%
921
2 minutes
20
Cullin-RING E3 ligases (CRLs) regulate different aspects of plant development and are activated by modification of their cullin subunit with the ubiquitin-like protein NEDD8 (NEural precursor cell expressed Developmentally Down-regulated 8) (neddylation) and deactivated by NEDD8 removal (deneddylation). The constitutively photomorphogenic9 (COP9) signalosome (CSN) acts as a molecular switch of CRLs activity by reverting their neddylation status, but its contribution to embryonic and early seedling development remains poorly characterized. Here, we analyzed the phenotypic defects of csn mutants and monitored the cullin deneddylation/neddylation ratio during embryonic and early seedling development. We show that while csn mutants can complete embryogenesis (albeit at a slower pace than wild-type) and are able to germinate (albeit at a reduced rate), they progressively lose meristem activity upon germination until they become unable to sustain growth. We also show that the majority of cullin proteins are progressively neddylated during the late stages of seed maturation and become deneddylated upon seed germination. This developmentally regulated shift in the cullin neddylation status is absent in csn mutants. We conclude that the CSN and its cullin deneddylation activity are required to sustain postembryonic meristem function in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molp.2015.08.003 | DOI Listing |
Plants (Basel)
July 2025
College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
Blue light is a significant environmental cue influencing plant photomorphogenesis and regulating plant growth and development. The COP9 signaling complex (CSN), a multi-subunit protein complex, plays a pivotal role in regulating photomorphogenesis, with CSN2 being identified as a key subunit essential for the assembly and function of the CSN. This study investigated the role of OsCSN2 in rice under blue-light conditions.
View Article and Find Full Text PDFThe efficacy of molecularly targeted therapies may be limited by co-occurring mutations within a tumor. Conversely, these alterations may confer collateral vulnerabilities that can be therapeutically leveraged. KRAS-mutant lung cancers are distinguished by recurrent loss of the tumor suppressor STK11/LKB1.
View Article and Find Full Text PDFUnlabelled: This paper describes a novel transgenic-based platform to track degeneration of specific populations of neurons in 5xFAD mice, a murine model of Alzheimer's disease. We created a new double transgenic model by crossing 5xFAD mice with Rosa reporter mice. 5xFAD /Rosa mice received intra-spinal cord injections of AAV-retrograde (rg)/Cre at 2-3 months of age to permanently label corticospinal neurons (CSNs).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Life Sciences, Jilin Agricultural University, Changchun 130118, China.
The COP9 signalosome (CSN) is a highly conserved multi-subunit protein complex, with CSN1 being its largest and most conserved subunit. The N-terminal function of CSN1 plays a pivotal and intricate role in plant photomorphogenesis and seedling development. Moreover, CSN is essential for far-red light-mediated photomorphogenesis in seedlings, but the function of OsCSN1 in seedling growth and development under far-red light conditions has not been determined.
View Article and Find Full Text PDFFunct Integr Genomics
February 2024
College of Life Sciences, Jilin Agricultural University, Changchun, 130118, People's Republic of China.
The COP9 signalosome (CSN) is a conserved protein complex found in higher eukaryotes, consisting of eight subunits, and it plays a crucial role in regulating various processes of plant growth and development. Among these subunits, CSN2 is one of the most conserved components within the COP9 signalosome complex. Despite its prior identification in other species, its specific function in Oryza sativa L.
View Article and Find Full Text PDF