Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The oxonitridosilicate chloride La6Ba3[Si17N29O2]Cl was synthesized by a high-temperature reaction in a radiofrequency furnace starting from LaCl3, BaH2, and the ammonolysis product of Si2Cl6. Diffraction data of a micrometer-sized single crystal were obtained using microfocused synchrotron radiation at beamline ID11 of the ESRF. EDX measurements on the same crystal confirm the chemical composition. The crystal structure [space group P63/m (no. 176), a = 9.8117(14), c = 19.286(6) Å, Z = 2] contains an unprecedented interrupted three-dimensional network of vertex-sharing SiN4 and SiN3O tetrahedra. The SiN4 tetrahedra form dreier rings. Twenty of the latter condense in a way that the Si atoms form icosahedra. Each icosahedron is connected to others via six SiN4 tetrahedra that are part of dreier rings and via six Q(3)-type SiN3O tetrahedra. Rietveld refinements confirm that the final product contains only a small amount of impurities. Lattice energy (MAPLE) and bond-valence sum (BVS) calculations show that the structure is electrostatically well balanced. Infrared spectroscopy confirms the absence of N-H bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b01368DOI Listing

Publication Analysis

Top Keywords

oxonitridosilicate chloride
8
sin3o tetrahedra
8
sin4 tetrahedra
8
dreier rings
8
la6ba3[si17n29o2]cl—an oxonitridosilicate
4
chloride exceptional
4
exceptional structural
4
structural motifs
4
motifs oxonitridosilicate
4
chloride la6ba3[si17n29o2]cl
4

Similar Publications

The oxonitridosilicate chloride La6Ba3[Si17N29O2]Cl was synthesized by a high-temperature reaction in a radiofrequency furnace starting from LaCl3, BaH2, and the ammonolysis product of Si2Cl6. Diffraction data of a micrometer-sized single crystal were obtained using microfocused synchrotron radiation at beamline ID11 of the ESRF. EDX measurements on the same crystal confirm the chemical composition.

View Article and Find Full Text PDF

The structural compression mechanism of Ce4[Si4O(3 + x)N(7 - x)]Cl(1 - x)O(x), x approximately = 0.2, was investigated by in situ single-crystal synchrotron X-ray diffraction at pressures of 3.0, 8.

View Article and Find Full Text PDF