98%
921
2 minutes
20
Candida infection has emerged as a critical health care burden worldwide, owing to the formation of robust biofilms against common antifungals. Recent evidence shows that multidrug-tolerant persisters critically account for biofilm recalcitrance, but their underlying biological mechanisms are poorly understood. Here, we first investigated the phenotypic characteristics of Candida biofilm persisters under consecutive harsh treatments of amphotericin B. The prolonged treatments effectively killed the majority of the cells of biofilms derived from representative strains of Candida albicans, Candida glabrata, and Candida tropicalis but failed to eradicate a small fraction of persisters. Next, we explored the tolerance mechanisms of the persisters through an investigation of the proteomic profiles of C. albicans biofilm persister fractions by liquid chromatography-tandem mass spectrometry. The C. albicans biofilm persisters displayed a specific proteomic signature, with an array of 205 differentially expressed proteins. The crucial enzymes involved in glycolysis, the tricarboxylic acid cycle, and protein synthesis were markedly downregulated, indicating that major metabolic activities are subdued in the persisters. It is noteworthy that certain metabolic pathways, such as the glyoxylate cycle, were able to be activated with significantly increased levels of isocitrate lyase and malate synthase. Moreover, a number of important proteins responsible for Candida growth, virulence, and the stress response were greatly upregulated. Interestingly, the persisters were tolerant to oxidative stress, despite highly induced intracellular superoxide. The current findings suggest that delicate metabolic control and a coordinated stress response may play a crucial role in mediating the survival and antifungal tolerance of Candida biofilm persisters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576078 | PMC |
http://dx.doi.org/10.1128/AAC.00543-15 | DOI Listing |
Curr Microbiol
September 2025
Department of Health Sciences, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100, Novara, Italy.
A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.
View Article and Find Full Text PDFCancer Pathog Ther
September 2025
Department of Microbiology, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
Oral cancer pathogenesis is significantly influenced by species, especially , through chronic inflammation and cellular dysregulation. Epidemiological studies highlight a strong correlation between persistent infections and oral carcinogenesis. Experimental evidence has identified key biomolecular mechanisms, including biofilm formation, epithelial invasion, and immune evasion.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
September 2025
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
Cystic Fibrosis (CF) is a multiorgan disease caused by mutations in the gene, leading to chronic pulmonary infections and hyperinflammation. Among pathogens colonizing the CF lung, is predominant, infecting over 50% of adults with CF, and becoming antibiotic-resistant over time. Current therapies for CF, while providing tremendous benefits, fail to eliminate persistent bacterial infections, chronic inflammation, and irreversible lung damage, necessitating novel therapeutic strategies.
View Article and Find Full Text PDFmBio
September 2025
Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia.
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) ESKAPE pathogens pose a significant global health threat due to their ability to evade antibiotics through intrinsic and acquired mechanisms. These bacteria, including , , , , , and species, evade antibiotics through intrinsic and adaptive mechanisms. Common strategies include capsule formation, biofilm, β-lactamase production, and efflux activity.
View Article and Find Full Text PDFClin Microbiol Rev
September 2025
Institute of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
SUMMARY spp. are members of the order and are widely found in humans, animals, and the environment. Some species, particularly are highly pathogenic and are among the most frequent causes of urinary tract and bloodstream infections.
View Article and Find Full Text PDF