Perilipin 3 Differentially Regulates Skeletal Muscle Lipid Oxidation in Active, Sedentary, and Type 2 Diabetic Males.

J Clin Endocrinol Metab

Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute f

Published: October 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Context: The role of perilipin 3 (PLIN3) on lipid oxidation is not fully understood.

Objective: We aimed to 1) determine whether skeletal muscle PLIN3 protein content is associated with lipid oxidation in humans, 2) understand the role of PLIN3 in lipid oxidation by knocking down PLIN3 protein content in primary human myotubes, and 3) compare PLIN3 content and its role in lipid oxidation in human primary skeletal muscle cultures established from sedentary, healthy lean (leans), type 2 diabetic (T2D), and physically active donors.

Design, Participants, And Intervention: This was a clinical investigation of 29 healthy, normoglycemic males and a cross-sectional study using primary human myotubes from five leans, four T2D, and four active donors. Energy expenditure, whole-body lipid oxidation, PLIN3 protein content in skeletal muscle tissue, and ex vivo muscle palmitate oxidation were measured. Myotubes underwent lipolytic stimulation (palmitate, forskolin, inomycin [PFI] cocktail), treatment with brefeldin A (BFA), and knockdown of PLIN3 using siRNA.

Setting: Experiments were performed in a Biomedical Research Institute.

Main Outcome Measures: Protein content, 24-hour respiratory quotient (RQ), and ex vivo/in vitro lipid oxidations.

Results: PLIN3 protein content was associated with 24-h RQ (r = -0.44; P = .02) and skeletal muscle-specific ex vivo palmitate oxidation (r = 0.61; P = .02). PLIN3 knockdown showed drastic reductions in lipid oxidation in myotubes from leans. Lipolytic stimulation increased PLIN3 protein in cells from leans over T2Ds with little expression in active participants. Furthermore, treatment with BFA, known to inhibit coatomers that associate with PLIN3, reduced lipid oxidation in cells from lean and T2D, but not in active participants.

Conclusions: Differential expression of PLIN3 and BFA sensitivity may explain differential lipid oxidation efficiency in skeletal muscle among these cohorts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596049PMC
http://dx.doi.org/10.1210/JC.2014-4125DOI Listing

Publication Analysis

Top Keywords

lipid oxidation
36
skeletal muscle
20
plin3 protein
20
protein content
20
plin3
12
oxidation
11
lipid
10
type diabetic
8
plin3 lipid
8
content associated
8

Similar Publications

Mitochondrial ClpX Inhibition Induces Ferroptosis and Blocks Pancreatic Cancer Cell Proliferation.

Chembiochem

September 2025

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.

The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.

View Article and Find Full Text PDF

RNF128 regulates the adaptive metabolic response to fasting by modulating PPARα function.

Cell Death Differ

September 2025

Graduate Institute of Physiology, College of Biomedical Sciences, National Defense Medical University, Taipei, Taiwan, Republic of China.

Peroxisome proliferator-activated receptor alpha (PPARα) is a crucial transcriptional factor that regulates fatty acid β-oxidation and ketogenesis in response to fasting. However, the mechanisms underlying PPARα function remain unclear. This study identified a novel PPARα-binding protein-RING finger protein 128 (RNF128)-that facilitates PPARα polyubiquitination, resulting in the degradation and suppression of PPARα function during fasting.

View Article and Find Full Text PDF

Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.

View Article and Find Full Text PDF

Intestinal dysmotility is a major complication that significantly impacts the prognosis of acute pancreatitis (AP). The neuronal nitric oxide synthase (nNOS) -expressing neurons within the enteric nervous system promote intestinal relaxation via the release of nitric oxide (NO). As the rate-limiting enzyme of NO synthesis, nNOS directly regulates NO production, thereby modulating intestinal motility.

View Article and Find Full Text PDF

Evaluation of the effects of bovine lactoferrin on the membrane of human erythrocytes.

Biochim Biophys Acta Biomembr

September 2025

Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil. Electronic address:

Lactoferrin (Lf) is an iron-binding glycoprotein involved in various biological functions, including iron metabolism and immune response. Bovine lactoferrin (bLf) has gained attention due to its potential therapeutic applications. This study investigates the effects of bLf on human erythrocyte membranes, focusing on Na,K-ATPase (NKA) modulation.

View Article and Find Full Text PDF