A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A simple electrochemical platform based on pectin stabilized gold nanoparticles for picomolar detection of biologically toxic amitrole. | LitMetric

A simple electrochemical platform based on pectin stabilized gold nanoparticles for picomolar detection of biologically toxic amitrole.

Analyst

Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China.

Published: August 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Amitrole is a biologically toxic nonselective herbicide which contaminates surface and ground waters at unprecedented rates. All reported modified electrodes that detect amitrole within sub-micromolar to nanomolar levels were based on the electro-oxidation of amitrole. Herein, we developed a new conceptual idea to detect picomolar concentrations of amitrole based on calcium cross linked pectin stabilized gold nanoparticle (CCLP-GNP) film modified electrode which was prepared by electrodeposition. When the electrochemical behavior of amitrole was investigated at the CCLP-GNP film, the reduction peak current of the GNPs linearly decreased as the concentration of amitrole increases. We have designed a determination platform based on the amitrole dependent decrease of the GNP cathodic peak. The described concept and high sensitivity of square wave voltammetry together facilitate the great sensing ability; as a result the described approach is able to reach a low detection limit of 36 pM which surpassed the detection limits of existing protocols. The sensor presents a good ability to determine amitrole in two linear concentration ranges: (1) 100 pM-1500 pM with a detection limit of 36 pM; (2) 100 nM-1500 nM with a detection limit of 20 nM. The preparation of CCLP-GNPs is simple, rapid and does not require any reducing agents.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5an00930hDOI Listing

Publication Analysis

Top Keywords

detection limit
12
amitrole
9
platform based
8
pectin stabilized
8
stabilized gold
8
biologically toxic
8
cclp-gnp film
8
detection
5
simple electrochemical
4
electrochemical platform
4

Similar Publications