A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Delayed Cell Cycle Progression in STHdh(Q111)/Hdh(Q111) Cells, a Cell Model for Huntington's Disease Mediated by microRNA-19a, microRNA-146a and microRNA-432. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Several indirect evidences are available to indicate that abnormalities in cell cycle may contribute to pathogenesis of Huntington's disease (HD). Here, we show that the cell cycle progression in STsdh(Q111)/Hdh(Q111)cells, a cell model of HD, is delayed in S and G2-M phases compared to control STHdhQ7/HdhQ7cells. Expression of 17 genes, like PCNA and CHEK1, was increased in STHdh(Q111)/Hdh(Q111)cells. Increased expressions of PCNA, CHEK1 and CCNA2, and an enhanced phosphorylation of Rb1 were observed in primary cortical neurons expressing mutant N-terminal huntingtin (HTT), R6/2 mice and STHdh(Q111)/Hdh(Q111) cells. This increase in the expressions of PCNA, CHEK1 and CCNA2 was found to be the result of decreased expressions of miR-432, miR-146a, and (miR-19a and miR-146a), respectively. Enhanced apoptosis was observed at late S phase and G2-M phase in STHdh(Q111)/Hdh(Q111)cells. Exogenous expressions of these miRNAs in STHdh(Q111)/Hdh(Q111) cells rescued the abnormalities in cell cycle and apoptosis. We also observed that inhibitors of cell cycle could decrease cell death in a cell model of HD. Based on these results obtained in cell and animal model of HD, we propose that inhibition of cell cycle either by miRNA expressions or by using inhibitors could be a potential approach for the treatment of HD.

Download full-text PDF

Source
http://dx.doi.org/10.2174/2211536604666150713105606DOI Listing

Publication Analysis

Top Keywords

cell cycle
24
sthdhq111/hdhq111 cells
12
cell model
12
pcna chek1
12
cell
10
cycle progression
8
huntington's disease
8
abnormalities cell
8
expressions pcna
8
chek1 ccna2
8

Similar Publications