A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Design of Thermally Responsive Polymeric Hydrogels for Brackish Water Desalination: Effect of Architecture on Swelling, Deswelling, and Salt Rejection. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we explore the ability of utilizing hydrogels synthesized from a temperature-sensitive polymer and a polyelectrolyte to desalinate salt water by means of reversible thermally induced absorption and desorption. Thus, the influence of the macromolecular architecture on the swelling/deswelling behavior for such hydrogels was investigated by tailor-made network structures. To this end, a series of chemically cross-linked polymeric hydrogels were synthesized via free radical-initiated copolymerization of sodium acrylate (SA) with the thermoresponsive comonomer N-isopropylacrylamide (NIPAAm) by realizing different structural types. In particular, two different polyNIPAAm macromonomers, either with one acrylate function at the chain end or with additional acrylate functions as side groups were synthesized by controlled polymerization and subsequent polymer-analogous reaction and then used as building blocks. The rheological behaviors of hydrogels and their estimated mesh sizes are discussed. The performance of the hydrogels in terms of swelling and deswelling in both deionized water (DI) and brackish water (2 g/L NaCl) was measured as a function of cross-linking degree and particle size. The salt content could be reduced by 23% in one cycle by using the best performing material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b03878DOI Listing

Publication Analysis

Top Keywords

polymeric hydrogels
8
brackish water
8
swelling deswelling
8
hydrogels synthesized
8
hydrogels
6
design thermally
4
thermally responsive
4
responsive polymeric
4
hydrogels brackish
4
water
4

Similar Publications